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COMPLETENESS VIA CORRESPONDENCE FOR EXTENSIONS
OF THE LOGIC OF PARADOX

BARTELD KOOI

Faculty of Philosophy, University of Groningen

and

ALLARD TAMMINGA

Faculty of Philosophy, University of Groningen
Institute of Philosophy, University of Oldenburg

Abstract. Taking our inspiration from modal correspondence theory, we present the idea of
correspondence analysis for many-valued logics. As a benchmark case, we study truth-functional
extensions of the Logic of Paradox (L P). First, we characterize each of the possible truth table
entries for unary and binary operators that could be added to L P by an inference scheme. Second,
we define a class of natural deduction systems on the basis of these characterizing inference schemes
and a natural deduction system for L P . Third, we show that each of the resulting natural deduction
systems is sound and complete with respect to its particular semantics.

§1. Introduction. The three-valued Logic of Paradox (L P) (Priest, 1979) is, unlike
classical propositional logic, not functionally complete. Among other things, this means
that adding unary truth-functional operators (∼) or binary truth-functional operators (◦)
to L P’s negation (¬), disjunction (∨), and conjunction (∧) poses special challenges for
the construction of proof systems for such logics.1 Given a logic L P(∼)m(◦)n obtained
by adding m truth-tables for unary operators ∼1, . . ., ∼m and n truth-tables for binary
operators ◦1, . . ., ◦n to L P’s truth-tables for ¬, ∨, ∧ and L P’s concept of validity, how
are we to construct a proof system for it? We provide a uniform method that generates a
natural deduction system for each logic L P(∼)m(◦)n .

To do so, we take the notion of correspondence theory from modal logic and adapt it
to the study of many-valued logics such as L P . In modal logic, correspondence theory
comprises model-theoretic and proof-theoretic concepts and methods that are based on
structural relations between, on the one hand, first-order (and higher-order) formulas and,
on the other, modal formulas and inference schemes. For example, for any Kripke frame F
it holds that the first-order formula ∀x Rxx is true of F’s accessibility relation R if and
only if the modal formula 2φ → φ is true on F. The modal formula is then said to
characterize the property expressed by the first-order formula. Moreover, adding the modal
formula 2φ → φ as an axiom to an axiom system for the basic modal logic K yields

Received: April 17, 2012.
1 Well-known three-valued logics that result from adding unary or binary truth-functional operators

to L P are RM3 (Anderson & Belnap, 1975) and J3 (D’Ottaviano & da Costa, 1970; Epstein &
D’Ottaviano, 2000).

c© Association for Symbolic Logic, 2012
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an axiom system which is sound and complete with respect to the class of all reflexive
frames.2

In this paper, we show that something similar can be done for a many-valued logic
such as L P . For example, for any truth table f⊃ it holds that the first-order formula
∀x∀y( f⊃(x, y) = 0 → f⊃(x, 0) = 0) is true of f⊃ if and only if the inference scheme
φ ⊃ (φ ⊃ ψ)/φ ⊃ ψ is valid according to f⊃. The inference scheme is then said to
characterize the property expressed by the first-order formula. We show that for every
single entry E in a truth table f for a unary or a binary operator there is an inference
scheme �/φ such that E is an entry in f if and only if �/φ is valid according to f . As
a consequence, each truth table for a unary (or binary) operator can be characterized in
terms of three (or nine) inference schemes. Moreover, adding the inference schemes that
characterize a truth table f as derivation rules to a natural deduction system for L P yields
a natural deduction system which is sound and complete with respect to the semantics that
also contains, next to L P’s truth-tables for ¬, ∨, and ∧, the truth table f . In this way, we
obtain a natural deduction system for each logic L P(∼)m(◦)n .

The structure of our paper is as follows. First, we present a correspondence analysis for
L P and characterize each of the 9 possible entries in the truth table for a unary operator ∼
and each of the 27 possible entries in a truth table for a binary operator ◦ by an inference
scheme. Second, we define a class of natural deduction systems on the basis of a natural
deduction system for L P and the 9 plus 27 characterizing inference schemes. Third, we
show that each of the resulting natural deduction systems is sound and complete with
respect to its particular semantics.

§2. Correspondence analysis for L P . The three-valued logic L P evaluates argu-
ments consisting of formulas from a propositional language L built from a set P =
{p, p′, . . .} of atomic formulas using negation (¬), disjunction (∨), and conjunction (∧).
In L P , a valuation is a function v from the set P of atomic formulas to the set {0, i, 1} of
truth-values ‘false’, ‘both’, and ‘true’. A valuation v on P is extended to a valuation on L
according to the truth-tables for ¬, ∨, and ∧:

f¬
0 1
i i
1 0

f∨ 0 i 1
0 0 i 1
i i i 1
1 1 1 1

f∧ 0 i 1
0 0 0 0
i 0 i i
1 0 i 1

An inference scheme from a set � of premises to a conclusion φ is valid (notation: � |� φ)
if and only if for each valuation v it holds that if v(ψ) �= 0 for all ψ in �, then v(φ) �= 0.

Let L(∼)m (◦)n be the language built from the set P = {p, p′, . . .} of atomic formulas
using ¬, ∨, ∧, unary operators ∼1, . . ., ∼m , and binary operators ◦1, . . ., ◦n . Clearly,
L(∼)m (◦)n is an extension of L. To interpret this extended language, we use, next to L P’s
truth-tables f¬, f∨, and f∧, the truth-tables f∼1 , . . ., f∼m and f◦1 , . . ., f◦n . We refer to
the resulting logic as L P(∼)m(◦)n . Which inference schemes are (in)valid in the logic
L P(∼)m(◦)n ultimately depends on the entries in the truth-tables of its operators. To study
these dependencies in a precise way, we present a single entry correspondence analysis
for L P .

2 The first studies in correspondence theory for modal logics were by Sahlqvist (1975) and van
Benthem (1976). For an up-to-date review of modal correspondence theory, see van Benthem
(2001).
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DEFINITION 2.1 (Correspondence) Let � ∪ {φ} ⊆ L(∼)m (◦)n . Let x, y, z ∈ {0, i, 1}. Let E
be a truth table entry of the type f∼(x) = y or f◦(x, y) = z. Then the truth table entry E
is characterized by an inference scheme �/φ, if

E if and only if � |� φ.

Accordingly, each of the 9 possible entries in a truth table f∼ and each of the 27 possible
entries in a truth table f◦ is characterized by an inference scheme (we do the binary case
first):

THEOREM 2.2. Let φ,ψ, χ ∈ L(∼)m (◦)n . Then

f◦(0, 0)=
⎧⎨
⎩

0 iff φ ◦ ψ |� φ ∨ ψ
i iff |� ((φ ◦ ψ) ∧ ¬(φ ◦ ψ)) ∨ (φ ∨ ψ)
1 iff ¬(φ ◦ ψ) |� φ ∨ ψ

f◦(0, i)=
⎧⎨
⎩

0 iff ψ ∧ ¬ψ, φ ◦ ψ |� φ
i iff ψ ∧ ¬ψ |� ((φ ◦ ψ) ∧ ¬(φ ◦ ψ)) ∨ φ
1 iff ψ ∧ ¬ψ, ¬(φ ◦ ψ) |� φ

f◦(0, 1)=
⎧⎨
⎩

0 iff φ ◦ ψ |� φ ∨ ¬ψ
i iff |� ((φ ◦ ψ) ∧ ¬(φ ◦ ψ)) ∨ (φ ∨ ¬ψ)
1 iff ¬(φ ◦ ψ) |� φ ∨ ¬ψ

f◦(i, 0)=
⎧⎨
⎩

0 iff φ ∧ ¬φ, φ ◦ ψ |� ψ
i iff φ ∧ ¬φ |� ((φ ◦ ψ) ∧ ¬(φ ◦ ψ)) ∨ ψ
1 iff φ ∧ ¬φ, ¬(φ ◦ ψ) |� ψ

f◦(i, i)=
⎧⎨
⎩

0 iff φ ∧ ¬φ,ψ ∧ ¬ψ, φ ◦ ψ |� χ
i iff φ ∧ ¬φ,ψ ∧ ¬ψ |� (φ ◦ ψ) ∧ ¬(φ ◦ ψ)
1 iff φ ∧ ¬φ,ψ ∧ ¬ψ, ¬(φ ◦ ψ) |� χ

f◦(i, 1)=
⎧⎨
⎩

0 iff φ ∧ ¬φ, φ ◦ ψ |� ¬ψ
i iff φ ∧ ¬φ |� ((φ ◦ ψ) ∧ ¬(φ ◦ ψ)) ∨ ¬ψ
1 iff φ ∧ ¬φ, ¬(φ ◦ ψ) |� ¬ψ

f◦(1, 0)=
⎧⎨
⎩

0 iff φ ◦ ψ |� ¬φ ∨ ψ
i iff |� ((φ ◦ ψ) ∧ ¬(φ ◦ ψ)) ∨ (¬φ ∨ ψ)
1 iff ¬(φ ◦ ψ) |� ¬φ ∨ ψ

f◦(1, i)=
⎧⎨
⎩

0 iff ψ ∧ ¬ψ, φ ◦ ψ |� ¬φ
i iff ψ ∧ ¬ψ |� ((φ ◦ ψ) ∧ ¬(φ ◦ ψ)) ∨ ¬φ
1 iff ψ ∧ ¬ψ, ¬(φ ◦ ψ) |� ¬φ

f◦(1, 1)=
⎧⎨
⎩

0 iff φ ◦ ψ |� ¬φ ∨ ¬ψ
i iff |� ((φ ◦ ψ) ∧ ¬(φ ◦ ψ)) ∨ (¬φ ∨ ¬ψ)
1 iff ¬(φ ◦ ψ) |� ¬φ ∨ ¬ψ.
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Proof. We prove the cases for f◦(0, 0) = 0, f◦(i, i) = 1, and f◦(1, i) = i .
Case f◦(0, 0) = 0. (⇒) Suppose that φ◦ψ �|� φ∨ψ . Then there is a valuation v such that

v(φ ◦ ψ) �= 0 and v(φ ∨ ψ) = 0. Then v(φ) = 0, v(ψ) = 0, and v(φ ◦ ψ) �= 0. Therefore,
it must be that f◦(0, 0) �= 0. (⇐) Suppose that φ ◦ ψ |� φ ∨ ψ . Then p ◦ q |� p ∨ q,
where p and q are atomic formulas. Then for every valuation v it holds that if v(p◦q) �= 0,
then v(p ∨ q) �= 0. Then for every valuation it holds that if v(p) = 0 and v(q) = 0, then
v(p ◦ q) = 0. Therefore, it must be that f◦(0, 0) = 0.

Case f◦(i, i) = 1. (⇒) Suppose that φ ∧ ¬φ,ψ ∧ ¬ψ, ¬(φ ◦ ψ) �|� χ . Then there is a
valuation v such that v(φ ∧ ¬φ) �= 0, v(ψ ∧ ¬ψ) �= 0, v(¬(φ ◦ ψ)) �= 0, and v(χ) = 0.
Then v(φ) = i , v(ψ) = i , and v(φ ◦ ψ) �= 1. Therefore, it must be that f◦(i, i) �= 1. (⇐)
Suppose that φ ∧¬φ,ψ ∧¬ψ, ¬(φ ◦ψ) |� χ . Then p ∧¬p, q ∧¬q, ¬(p ◦q) |� r , where
p, q , and r are atomic formulas. Then for every valuation v it holds that if v(p ∧¬p) �= 0,
v(q ∧¬q) �= 0, and v(¬(p ◦ q)) �= 0, then v(r) �= 0. Then, since v(r) is independent from
v(p) and v(q), it must be that for every valuation v it holds that if v(p) = i and v(q) = i ,
then v(p ◦ q) = 1. Therefore, it must be that f◦(i, i) = 1.

Case f◦(1, i) = i . (⇒) Suppose that ψ ∧¬ψ �|� ((φ ◦ψ)∧¬(φ ◦ψ))∨¬φ. Then there
is a valuation v such that v(ψ ∧ ¬ψ) �= 0 and v(((φ ◦ ψ) ∧ ¬(φ ◦ ψ)) ∨ ¬φ) = 0. Then
v(φ) = 1, v(ψ) = i , and v(φ◦ψ) �= i . Therefore, it must be that f◦(1, i) �= i . (⇐) Suppose
that ψ∧¬ψ |� ((φ◦ψ)∧¬(φ◦ψ))∨¬φ. Then q ∧¬q |� ((p◦q)∧¬(p◦q))∨¬p, where
p and q are atomic formulas. Then for every valuation v it holds that if v(q ∧ ¬q) �= 0,
then v(((p ◦q)∧¬(p ◦q))∨¬p) �= 0. Then for every valuation v it holds that if v(q) = i ,
then v(p ◦ q) = i or v(p) �= 1. Then for every valuation v it holds that if v(p) = 1 and
v(q) = i , then v(p ◦ q) = i . Therefore, it must be that f◦(1, i) = i .

The other cases are proved similarly. �

COROLLARY 2.3. Let φ,ψ ∈ L(∼)m (◦)n . Then

f∼(0)=
⎧⎨
⎩

0 iff ∼ φ |� φ
i iff |� (∼ φ ∧ ¬ ∼ φ) ∨ φ
1 iff ¬ ∼ φ |� φ

f∼(i)=
⎧⎨
⎩

0 iff φ ∧ ¬φ, ∼ φ |� ψ
i iff φ ∧ ¬φ |�∼ φ ∧ ¬ ∼ φ
1 iff φ ∧ ¬φ, ¬ ∼ φ |� ψ

f∼(1)=
⎧⎨
⎩

0 iff ∼ φ |� ¬φ
i iff |� (∼ φ ∧ ¬ ∼ φ) ∨ ¬φ
1 iff ¬ ∼ φ |� ¬φ.

Proof. Adapt the cases f◦(0, 0), f◦(i, i), and f◦(1, 1). �
As a consequence, given L P’s truth-tables f¬, f∨, f∧, and its concept of validity, each

unary operator ∼k (1 ≤ k ≤ m) in the logic L P(∼)m(◦)n is characterized by the set of
three inference schemes that characterize the three entries in its truth table f∼k . Likewise,
each binary operator ◦l (1 ≤ l ≤ n) in the logic L P(∼)m(◦)n is characterized by the set of
nine inference schemes that characterize the nine entries in its truth table f◦l . Note that the
inference schemes that characterize a truth table are independent.

§3. Natural deduction systems. We show that for each logic L P(∼)m(◦)n it holds
that if we add the three characterizing inference schemes of each unary operator
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∼k (1 ≤ k ≤ m) and the nine characterizing inference schemes of each binary operator ◦l

(1 ≤ l ≤ n) as derivation rules to a natural deduction system for L P , we obtain a sound
and complete proof system for it.

The proof system NDL P is defined as follows.3 It is a corollary of our main theorem that
NDL P is sound and complete with respect to L P .

DEFINITION 3.1 Derivations in the system NDL P are inductively defined as follows:

Basis: The proof tree with a single occurrence of an assumption φ is a derivation.

Induction Step: Let D, D1, D2, D3 be derivations. Then they can be extended by the
following rules (double lines indicate that the rules work both ways):

EM
φ ∨ ¬φ

D1

φ

D2

ψ ∧I
φ ∧ ψ

D
φ ∧ ψ ∧E1φ

D
φ ∧ ψ ∧E2ψ

D
φ ∨I1φ ∨ ψ

D
ψ ∨I2φ ∨ ψ

D1

φ∨ψ

[φ]u

D2
χ

[ψ]v

D3
χ ∨E u,v

χ

D
φ

DN¬¬φ

D
¬(φ ∨ ψ)

DeM∨¬φ ∧ ¬ψ

D
¬(φ ∧ ψ)

DeM∧¬φ ∨ ¬ψ

Theorem 2.2 and Corollary 2.3 tell us that each truth table f∼ is characterized by three
inference schemes and that each truth table f◦ is characterized by nine inference schemes.
What we add to the proof system NDL P are these characterizing inference schemes turned
into derivation rules. To be precise, for each inference scheme ψ1, . . . , ψ j/φ that charac-
terizes an entry f∼(x) = y in the truth table f∼, we add the rule

D1

ψ1 · · ·
D j

ψ j
R∼(x, y)

φ

to the system NDL P . Likewise, for each inference scheme ψ1, . . . , ψ j/φ that characterizes
an entry f◦(x, y) = z in the truth table f◦, we add the rule

D1

ψ1 · · ·
D j

ψ j
R◦(x, y, z)

φ

to the system NDL P .
For example, suppose f◦(0, 0) = 0 is one of the truth table entries in f◦. Then, because

φ ◦ ψ/φ ∨ ψ characterizes f◦(0, 0) = 0, we add the rule

D
φ ◦ ψ

R◦(0, 0, 0)
φ ∨ ψ

to our proof system.

3 The notational conventions are given in Troelstra & Schwichtenberg (1996).
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In this way, we obtain a natural deduction system NDL P +⋃m
k=1{R∼k (x, y) : f∼k (x) =

y} + ⋃n
l=1{R◦l (x, y, z) : f◦l (x, y) = z}, which we refer to as NDL P(∼)m (◦)n . Thus, any

combination of a choice of m (out of 33 = 27) truth-tables for unary operators and a choice
of n (out of 39 = 19683) truth-tables for binary operators defines a natural deduction
system NDL P(∼)m (◦)n . Hence, we get 227 × 219683 natural deduction systems. We prove
their soundness and completeness in one go.

3.1. Soundness of NDL P(∼)m (◦)n . A conclusion φ is derivable from a set � of
premises (notation: � � φ) if and only if there is a derivation in the system NDL P(∼)m (◦)n

of φ from �.

LEMMA 3.2 (Local Soundness). Let �,�′,�′′ ⊆ L(∼)m (◦)n and let φ,ψ ∈ L(∼)m (◦)n .
Then

(i) If φ ∈ �, then � |� φ

(ii) � |� φ ∨ ¬φ

(iii) If � |� φ and �′ |� ψ , then �,�′ |� φ ∧ ψ

(iv) If � |� φ ∧ ψ , then � |� φ

(v) If � |� φ ∧ ψ , then � |� ψ

(vi) If � |� φ, then � |� φ ∨ ψ

(vii) If � |� ψ , then � |� φ ∨ ψ

(ix) If � |� φ ∨ ψ and �′, φ |� χ and �′′, ψ |� χ , then �,�′,�′′ |� χ

(x) � |� φ if and only if � |� ¬¬φ

(xi) � |� ¬(φ ∨ ψ) if and only if � |� ¬φ ∧ ¬ψ

(xii) � |� ¬(φ ∧ ψ) if and only if � |� ¬φ ∨ ¬ψ .

THEOREM 3.3 (Soundness). Let � ∪ {φ} ⊆ L(∼)m (◦)n . Then

If � � φ, then � |� φ.

Proof. The proof is by induction on the depth of derivation. The local soundness of
the rules of NDL P follows from Lemma 3.2. For each unary operator ∼k (1 ≤ k ≤ m),
the local soundness of the three rules in {R∼k (x, y) : f∼k (x) = y} follows from
Corollary 2.3. For each binary operator ◦l (1 ≤ l ≤ n), the local soundness of the nine
rules in {R◦l (x, y, z) : f◦l (x, y) = z} follows from Theorem 2.2. �

3.2. Completeness of NDL P(∼)m (◦)n . In our completeness proof, nontrivial prime
theories are the syntactical counterparts of valuations. Any set of formulas that is
(i) not equal to the whole language, (ii) closed under derivability, and (iii) closed under
the disjunction property is a nontrivial prime theory (NPT):

DEFINITION 3.4 Let � ⊆ L(∼)m (◦)n . Then � is a nontrivial prime theory (NPT), if it is

nontrivial: � �= L(∼)m (◦)n

closed: If � � φ, then φ ∈ �

prime: If φ ∨ ψ ∈ �, then φ ∈ � or ψ ∈ �.

DEFINITION 3.5 Let � ∪ {φ} ⊆ L(∼)m (◦)n . We define φ’s elementhood in � (notation:
e(φ,�)) as follows:



COMPLETENESS VIA CORRESPONDENCE FOR EXTENSIONS OF L P 7

e(φ,�) =

⎧⎪⎪⎨
⎪⎪⎩

∅, if φ �∈ � and ¬φ �∈ �
0, if φ �∈ � and ¬φ ∈ �
i , if φ ∈ � and ¬φ ∈ �
1, if φ ∈ � and ¬φ �∈ �.

LEMMA 3.6. Let � be an NPT and let φ,ψ ∈ L(∼)m (◦)n . Then

(i) e(φ,�) �= ∅
(ii) f¬(e(φ,�)) = e(¬φ,�)

(iii) f∨(e(φ,�), e(ψ,�)) = e(φ ∨ ψ,�)

(iv) f∧(e(φ,�), e(ψ,�)) = e(φ ∧ ψ,�)

(v) f∼k (e(φ,�)) = e(∼k φ,�) for 1 ≤ k ≤ m

(vi) f◦l (e(φ,�), e(ψ,�)) = e(φ ◦l ψ,�) for 1 ≤ l ≤ n.

Proof.

(i) By the rule EM, it must be that � � φ ∨ ¬φ. By closure and primeness, φ ∈ � or
¬φ ∈ �. Therefore, e(φ,�) �= ∅.

(ii) Suppose e(φ,�) = 0. Then φ �∈ � and ¬φ ∈ �. By closure and the rule DN,
¬φ ∈ � and ¬¬φ �∈ �. Hence, e(¬φ,�) = 1 = f¬(0) = f¬(e(φ,�)).
Suppose e(φ,�) = i . Then φ ∈ � and ¬φ ∈ �. By closure and the rule DN,
¬φ ∈ � and ¬¬φ ∈ �. Hence, e(¬φ,�) = i = f¬(i) = f¬(e(φ,�)).
Suppose e(φ,�) = 1. Then φ ∈ � and ¬φ �∈ �. By closure and the rule DN,
¬φ �∈ � and ¬¬φ ∈ �. Hence, e(¬φ,�) = 0 = f¬(1) = f¬(e(φ,�)).

(iii) We prove the cases for (1) e(φ,�) = 0 and e(ψ,�) = 0, (2) e(φ,�) = i and
e(ψ,�) = i , and (3) e(φ,�) = 1 and e(ψ,�) = i . The other six cases are proved
similarly.

(1) Suppose e(φ,�) = 0 and e(ψ,�) = 0. Then φ �∈ �, ψ �∈ �, ¬φ ∈
�, and ¬ψ ∈ �. By primeness, φ ∨ ψ �∈ �. By closure and the rules
∧I and DeM∨, ¬(φ ∨ ψ) ∈ �. Hence, e(φ ∨ ψ,�) = 0 = f∨(0, 0) =
f∨(e(φ,�), e(ψ,�)).

(2) Suppose e(φ,�) = i and e(ψ,�) = i . Then φ ∈ �, ψ ∈ �, ¬φ ∈ �,
and ¬ψ ∈ �. By closure and the rule ∨I1, φ ∨ ψ ∈ �. By closure and the
rules ∧I and DeM∨, ¬(φ ∨ ψ) ∈ �. Hence, e(φ ∨ ψ,�) = i = f∨(i, i) =
f∨(e(φ,�), e(ψ,�)).

(3) Suppose e(φ,�) = 1 and e(ψ,�) = i . Then φ ∈ �, ψ ∈ �, ¬φ �∈ �, and
¬ψ ∈ �. By closure and the rule ∨I1, φ ∨ ψ ∈ �. By closure and the rules
∧E1 and DeM∨, ¬(φ ∨ ψ) �∈ �. Hence, e(φ ∨ ψ,�) = 1 = f∨(1, i) =
f∨(e(φ,�), e(ψ,�)).

(iv) Analogous to (iii).

(v) Analogous to (vi).

(vi) There are nine cases for each ◦l (1 ≤ l ≤ n). (For readability, we drop the subscript
l in the remainder of this proof.) We prove the cases for (1) e(φ,�) = 0 and
e(ψ,�) = 0, (2) e(φ,�) = i and e(ψ,�) = i , and (3) e(φ,�) = 1 and
e(ψ,�) = i . The other six cases are proved similarly.

(1) Suppose e(φ,�) = 0 and e(ψ,�) = 0. Then φ �∈ �, ψ �∈ �, ¬φ ∈ �, and
¬ψ ∈ �. There are three cases: (a), (b), and (c).
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(a) Suppose R◦(0, 0, 0) is one of the nine rules for ◦ in NDL P(∼)m (◦)n . Then
f◦(0, 0) = 0. Suppose φ ◦ ψ ∈ �. By closure, primeness, and the rule
R◦(0, 0, 0), it must be that φ ∈ � or ψ ∈ �. Contradiction. Hence, φ ◦ ψ �∈
� and, by (i), ¬(φ ◦ ψ) ∈ �. Therefore, e(φ ◦ ψ,�) = 0 = f◦(0, 0) =
f◦(e(φ,�), e(ψ,�)).

(b) Suppose R◦(0, 0, i) is one of the nine rules for ◦ in NDL P(∼)m (◦)n . Then
f◦(0, 0) = i . By closure, primeness, and the rules R◦(0, 0, i), ∧E1, and
∧E2, it must be that φ ◦ψ ∈ � and ¬(φ ◦ψ) ∈ �. Therefore, e(φ ◦ψ,�) =
i = f◦(0, 0) = f◦(e(φ,�), e(ψ,�)).

(c) Suppose R◦(0, 0, 1) is one of the nine rules for ◦ in NDL P(∼)m (◦)n .
Analogous to (1)(a).

(2) Suppose e(φ,�) = i and e(ψ,�) = i . Then φ ∈ �, ψ ∈ �, ¬φ ∈ �, and
¬ψ ∈ �. There are three cases: (a), (b), and (c).

(a) Suppose R◦(i, i, 0) is one of the nine rules for ◦ in NDL P(∼)m (◦)n . Then
f◦(i, i) = 0. Suppose φ ◦ψ ∈ �. By closure and the rules ∧I and R◦(i, i, 0),
it must be that � = L(∼)m (◦)n . But � is nontrivial. Contradiction. Hence,
φ ◦ ψ �∈ � and, by (i), ¬(φ ◦ ψ) ∈ �. Therefore, e(φ ◦ ψ,�) = 0 =
f◦(i, i) = f◦(e(φ,�), e(ψ,�)).

(b) Suppose R◦(i, i, i) is one of the nine rules for ◦ in NDL P(∼)m (◦)n . Then
f◦(i, i) = i . By closure and the rules ∧I, ∧E1, ∧E2, and R◦(i, i, i), it must be
that φ ◦ ψ ∈ � and ¬(φ ◦ψ) ∈ �. Therefore, e(φ ◦ψ,�) = i = f◦(i, i) =
f◦(e(φ,�), e(ψ,�)).

(c) Suppose R◦(i, i, 1) is one of the nine rules for ◦ in NDL P(∼)m (◦)n . Analogous
to (2)(a).

(3) Suppose e(φ,�) = 1 and e(ψ,�) = i . Then φ ∈ �, ψ ∈ �, ¬φ �∈ �, and
¬ψ ∈ �. There are three cases: (a), (b), and (c).

(a) Suppose R◦(1, i, 0) is one of the nine rules for ◦ in NDL P(∼)m (◦)n . Then
f◦(1, i) = 0. Suppose φ◦ψ ∈ �. By closure and the rules ∧I and R◦(1, i, 0),
it must be that ¬φ ∈ �. Contradiction. Hence, φ ◦ ψ �∈ � and, by
(i), ¬(φ ◦ ψ) ∈ �. Therefore, e(φ ◦ ψ,�) = 0 = f◦(1, i) = f◦(e(φ,�),
e(ψ,�)).

(b) Suppose R◦(1, i, i) is one of the nine rules for ◦ in NDL P(∼)m (◦)n . Then
f◦(1, i) = i . By closure, primeness, and the rules ∧I, ∧E1, ∧E2, and
R◦(1, i, i), it must be that φ ◦ ψ ∈ � and ¬(φ ◦ ψ) ∈ �. Therefore,
e(φ ◦ ψ,�) = i = f◦(1, i) = f◦(e(φ,�), e(ψ,�)).

(c) Suppose R◦(1, i, 1) is one of the nine rules for ◦ in NDL P(∼)m (◦)n . Analogous
to (3)(a). �

LEMMA 3.7 (Truth). Let � be an NPT. Let v� be the function that assigns to each
atomic formula p in P the elementhood of p in �: v�(p) = e(p,�) for all p in P . Then
for all φ in L(∼)m (◦)n it holds that

v�(φ) = e(φ,�).

Proof. By a straightforward induction on φ. Use Lemma 3.6. �
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LEMMA 3.8 (Lindenbaum). Let � ∪ {φ} ⊆ L(∼)m (◦)n . Suppose that � �� φ. Then there
is a set �∗ ⊆ L(∼)m (◦)n such that

(i) � ⊆ �∗

(ii) �∗ �� φ

(iii) �∗ is an NPT.

Proof. Suppose that � �� φ. Let ψ1, ψ2, . . . be an enumeration of L(∼)m (◦)n . We define
the sequence �0,�1, . . . of sets of formulas as follows:

�0 = �

�i+1 =
{

�i ∪ {ψi+1}, if �i ∪ {ψi+1} �� φ
�i , otherwise.

Take �∗ = ⋃
n∈N�n . Then the claims (i), (ii), and (iii) hold:

(i) Obviously � ⊆ �∗.

(ii) Suppose �∗ � φ. Then there is a finite �′ such that �′ ⊆ �∗ and �′ � φ, because
derivations are finite. Then there must be an n in N such that �′ ⊆ �n . Then
�n � φ. By the construction, �n �� φ. Contradiction. Therefore, �∗ �� φ.

(iii) To show that �∗ is an NPT, we have to show that (a) �∗ is closed, (b) �∗ is prime,
and (c) �∗ is nontrivial.

(a) Suppose �∗ � ψ . Then ψ = ψn for some n ∈ N. Suppose ψn �∈ �n . By
the construction, �n−1 ∪ {ψn} � φ. Because �n−1 ⊆ �∗ and �∗ � ψn , it
must be that �∗ � φ. This contradicts what was proved in (ii) of this lemma.
Hence, ψ ∈ �∗. Therefore, �∗ is closed.

(b) Suppose that ψ ∨ χ ∈ �∗. Suppose ψ �∈ �∗ and χ �∈ �∗. Then ψ =
ψm for some m ∈ N and χ = ψn for some n ∈ N. By the construction,
�m−1 ∪ {ψm} � φ and �n−1 ∪ {ψn} � φ. Obviously, �∗ � ψm ∨ ψn . Note
that �m ⊆ �∗ and �n ⊆ �∗. Hence, �∗ ∪ {ψm} � φ and �∗ ∪ {ψn} � φ.
By the rule ∨Eu,v , it must be that �∗ � φ. This contradicts what was proved
in (ii) of this lemma. Hence, ψ ∈ �∗ or χ ∈ �∗. Therefore, �∗ is prime.

(c) Because of what was proved in (ii) of this lemma, it must be that φ �∈ �∗.
Therefore, �∗ is nontrivial. �

THEOREM 3.9 (Completeness). Let � ∪ {φ} ⊆ L(∼)m (◦)n . Then

If � |� φ, then � � φ.

Proof. By contraposition. Suppose � �� φ. By Lemma 3.8, there is an NPT �∗ such that
� ⊆ �∗ and �∗ �� φ. Let v�∗ be the valuation introduced in Lemma 3.7. By Lemma 3.7,
it holds that v�∗(ψ) �= 0 for all ψ in � and v�∗(φ) = 0. Therefore � �|� φ. �

COROLLARY 3.10. The system NDL P is sound and complete with respect to L P.

Proof. Consider the logic L P¬ that is obtained from L P by adding L P’s truth table
f¬ for negation to it. Obviously, L P¬ is L P . By Theorems 3.3 and 3.9, NDL P¬ is sound
and complete with respect to L P¬. It is easy to see that the rules R¬(0, 1), R¬(i, i), and
R¬(1, 0) are derived rules in NDL P . �

§4. Conclusion. The present investigation of the Logic of Paradox (L P) is only a first
step in the development of a full-blown correspondence analysis for many-valued logics.
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It is to be expected that similar characterizations can be given of truth table entries of
n-ary operators and of truth table entries of many-valued logics that have other sets of
truth-values or other sets of designated values than L P . But there is more. Correspondence
analysis for many-valued logics raises new theoretical questions and offers simple and
powerful techniques to answer them. Let us illustrate this by briefly focusing on a well-
known extension of L P: the relevant logic RM3. This is the logic which we get if we add
to L P the following truth table for implication (⊃):

f⊃ 0 i 1
0 1 1 1
i 0 i 1
1 0 0 1

From Theorem 3.9 it follows that if we add the nine derivation rules that characterize the
nine entries in the truth table f⊃ to the basic natural deduction system NDL P , we obtain
a natural deduction system which is sound and complete with respect to RM3. Let us call
this natural deduction system NDRM3 .

As a consequence of its completeness with respect to RM3, all the axioms and derivation
rules of the axiomatizations of RM3 in the literature (Anderson & Belnap, 1975, pp. 469–
470; Brady, 1982) are provable in NDRM3 . Which of the nine derivation rules that char-
acterize the truth table f⊃ are necessary and sufficient for which axioms and derivation
rules in these axiomatizations of RM3? With answers to this question, we can systematize
the contribution of an individual entry in the truth table f⊃ to the overall properties of
implication in RM3. Let us just list some preliminary results.

Against the background of NDL P we can show that the rules R⊃(i, 0, 0) and R⊃(1, 0, 0)
taken together are deductively equivalent to φ, φ ⊃ ψ � ψ , that the rules R⊃(1, 0, 0)
and R⊃(1, i, 0) taken together are deductively equivalent to φ ⊃ ψ, ¬ψ � ¬φ, that
the rules R⊃(0, 0, 1), R⊃(0, i, 1), R⊃(0, 1, 1) taken together are deductively equivalent
to ¬(φ ⊃ ψ) � φ, and that the rules R⊃(0, 1, 1), R⊃(i, 1, 1), and R⊃(1, 1, 1) taken
together are deductively equivalent to ¬(φ ⊃ ψ) � ¬ψ . Hence, these four derivation rules
characterize eight out of nine entries in the truth table f⊃. Adding these four derivation
rules and the derivation rule R⊃(i, i, i) to the basic system NDL P therefore yields another
natural deduction system that is sound and complete with respect to RM3.

In summary, correspondence analysis for many-valued logics greatly facilitates proof-
theoretic investigations of these logics. It helps us to explore uncharted territory and opens
up new perspectives. Where it will all lead us is yet to be seen.
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