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Language [Wang 2018]

Definition (Language)

Given a set of propositional letters P, the language LKh is defined
by the following BNF where p ∈ P:

ϕ ::= > | p | ¬ϕ | (ϕ ∧ ϕ) | Kh(ϕ,ϕ).

Kh(ψ,ϕ) expresses that the agent knows how to achieve ϕ given
ψ.

Know-how expressions often come with implicit preconditions. This
language makes such preconditions explicit by introducing the
binary modality Kh.

Uϕ is defined as Kh(¬ϕ,⊥). Uϕ is a universal modality as it will
become more clear after defining the semantics.
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Model [Wang 2018]

Definition (Model)

A model is a labelled transition system (S,Σ,R,V) where:

· S is a non-empty set of states;

· Σ is a non-empty set of actions;

· R : Σ→ 2S×S is a collection of transitions labelled by Σ;

· V : S → 2P is a valuation function.

We write s
a−→ t and say t is an a-successor of s, if (s, t) ∈ R(a).

s3 : q

s1
a //

a
<<

s2 : p

b

OO
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Strongly Executable Plans [Wang 2018]

M, s |= Kh(ψ,ϕ) ⇔ there exists σ ∈ Σ∗ s.t. for all M, s
′ |= ψ :

(1) σ is strongly executable at s
′
, and

(2) for all t, if s
′ σ−→ t then M, t |= ϕ

where we say σ = a1 · · · an is strongly executable at s
′

if:
s
′

has an a1-successor and for any 1 ≤ k < n and any r , s
′ σk−→ r

implies that r has at least one ak+1-successor.

s4 s5
b // s6

s1
a //

a
>>

c

OO

s2
b,c // s3

ab is strongly executable at s1.
b is not strongly executable at s1.
ac is not strongly executable at s1.
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Strongly Executable Plans [Wang 2018]

M, s |= Kh(ψ,ϕ) ⇔ there exists σ ∈ Σ∗ s.t. for all M, s
′ |= ψ :

(1) σ is strongly executable at s
′
, and

(2) for all t, if s
′ σ−→ t then M, t |= ϕ

s6 s7 : q s8 : q, o

s1
r // s2 : p

r //

u

OO

s3 : p
r //

u

OO

s4
r //

u

OO

s5 : t
l

oo

M, s1 � Kh(p, q)

Note that the semantics of Kh-formulas ignores the current state
s. The formula of the form Kh(ψ,ϕ) is globally true or false.

M � Kh(p, q), M � ¬Kh(p, t)
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Stopping means achieving [Li 2016]

M, s |= Khw(ψ,ϕ) ⇔ there exists σ ∈ Σ∗ s.t. for all M, s
′ |= ψ :

for all t, if s
′ σ−→w t then M, t |= ϕ

where s
′ σ−→w t means that t is a state at which executing σ on s

′

might terminate.

s6 s7 : q s8 : q, o

s1
r // s2 : p

r //

u

OO

s3 : p
r //

u

OO

s4
r //

u

OO

s5 : t
l

oo

Khw(p, t), Khw(t, o), ¬Khw(p, o)
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The Composition Axiom

COMPKh: Kh(p, r) ∧ Kh(r , q)→ Kh(p, q)

Khw -interpretation of knowing-how results in a wearker logic
where the composition axiom in [Wang, 2018] no longer holds.
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Language and Model

Definition (Language)

Given a set of propositional letters P, the language LKhs is defined
by the following BNF where p ∈ P:

ϕ ::= > | p | ¬ϕ | (ϕ ∧ ϕ) | Khs(ϕ,ϕ).

Definition (Model)

A model is a labelled transition system (S,Σ,R,V) where:

· S is a non-empty set of states;

· Σ is a non-empty set of actions;

· R : Σ→ 2S×S is a collection of transitions labelled by Σ;

· V : S → 2P is a valuation function.
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Skippable Plans

Given a model (S,Σ,R,V), a state w ∈ S and an action sequence
σ = a1 · · · an ∈ Σ∗, ArrSta(w , σ) is the set of states at which
executing σ on w might arrive.

Definition (Arrival States)

ArrSta(w , a) =

{
{w}, if w has no a-successor

{t ∈ S | w a−→ t}, otherwise

We write w
a−→st if t ∈ ArrSta(w , a).

ArrSta(w , σ) = {t | ∃t1 · · · tn−1 : w
a1−→st1

a2−→s · · · tn−1
an−→st}.

We write w
σ−→st if t ∈ ArrSta(w , σ).

In particular, σ can be the empty sequence ε. We set that w
ε−→sw .
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Semantics

Definition (Semantics)

The satisfaction relation � is defined as follows:

M, s � > always
M, s � p ⇐⇒ p ∈ V(s)
M, s � ¬ϕ ⇐⇒ M, s 2 ϕ
M, s � ϕ ∧ ψ ⇐⇒ M, s � ϕ and M, s � ψ
M, s � Khs(ψ,ϕ) ⇐⇒ there exists σ ∈ Σ∗ such that for each

w ∈ [[ψ]]M and each t ∈ ArrSta(w , σ)
we have M, t |= ϕ

where [[ψ]]M = {s | M, s � ψ}.

The formula of the form Khs(ψ,ϕ) is globally true or false.
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s6 s7 : q s8 : q, o

s1
r // s2 : p

r //

u

OO

s3 : p
r //

u

OO

s4
r //

u

OO

s5 : t
l

oo

Khs(p, o) : rrrlu
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The Operator U

U is a universal modality:

M, s � Uϕ ⇐⇒ M,w � ϕ for all w ∈ S

To see this, check the following:

M, s � Uϕ ⇐⇒ M, s � Khs(¬ϕ,⊥)
⇐⇒ there is σ ∈ Σ∗ such that for each w ∈ [[¬ϕ]]M

and each t ∈ ArrSta(w , σ): M, t |= ⊥
⇐⇒ there is σ ∈ Σ∗ such that for each w ∈ [[¬ϕ]]M:

there is no t such that t ∈ ArrSta(w , σ)
⇐⇒ there is σ ∈ Σ∗ such that there is no w such

that M,w � ψ
⇐⇒ M,w � ϕ for all w ∈ S
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Proof System SKHS

Axioms
TAUT all axioms of propositional logic
DISTU Up ∧ U(p → q)→ Uq
COMPKh Khs(p, r) ∧ Khs(r , q)→ Khs(p, q)
EMP U(p → q)→ Khs(p, q)
TU Up → p
4KU Khs(p, q)→ UKhs(p, q)
5KU ¬Khs(p, q)→ U¬Khs(p, q)

Rules

MP
ϕ, ϕ→ψ

ψ

NECU
ϕ
Uϕ

SUB
ϕ(p)

ϕ[(ψ/p)]
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Soundness

Theorem (Soundness)

SKHS is sound w.r.t. the class of all models.

Proof.

The only non-trivial case is COMPKh. Note that if there is an
action sequence σ1 leading you from any p-state to some r -state,
and there is a sequence σ2 from any r -state to some q-state, then
σ1σ2 will make sure that you end up with q-states from any
p-state.
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Canonical Model

Since Khs-formulars are globally true or false, it is not possible to
satisfy all Khs-formulas simultaneously in a single model. We built
a separate canonical model for each maximal consistent set.

Given a set of LKhs formulas ∆, let ∆|Khs and ∆|¬Khs be the
collections of its positive and negative Khs formulas:

∆|Khs = {θ | θ = Khs(ψ,ϕ) ∈ ∆},

∆|¬Khs = {θ | θ = ¬Khs(ψ,ϕ) ∈ ∆}.
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Definition (Canonical Models)

Given a maximal consistent set Γ w.r.t. SKHS, the canonical
model for Γ is Mc

Γ = 〈ScΓ , ΣΓ , Rc , Vc〉 where:

ScΓ = {∆ | ∆ is a MCS w.r.t. SKHS and Γ |Khs = ∆|Khs},
ΣΓ = {〈ψ,ϕ〉 | Khs(ψ,ϕ) ∈ Γ},

∆
〈ψ,ϕ〉−−−→cΘ iff 1. Khs(ψ,ϕ) ∈ Γ , ψ ∈ ∆, ϕ ∈ Θ, or

2. Khs(ψ,ϕ) ∈ Γ , ¬ψ ∈ ∆, ∆ = Θ, or
3. Khs(ψ,ϕ) ∈ Γ , ¬ψ ∈ ∆, ψ ∈ Θ,

p ∈ Vc(∆) iff p ∈ ∆.

We say that ∆ ∈ ScΓ is a ϕ-state if ϕ ∈ ∆.
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Completeness

Proposition

If ϕ ∈ ∆ for all ∆ ∈ ScΓ , then Uϕ ∈ ∆ for all ∆ ∈ ScΓ .

Proof.

Suppose ϕ ∈ ∆ for all ∆ ∈ ScΓ . Then ¬ϕ is not consistent with
Γ |Khs ∪ Γ |¬Khs .

`
∧

1≤i≤k
Khs(ψi , ϕi ) ∧

∧
1≤j≤l

¬Khs(ψ
′
j , ϕ

′
j)→ ϕ

` U(
∧

1≤i≤k
Khs(ψi , ϕi ) ∧

∧
1≤j≤l

¬Khs(ψ
′
j , ϕ

′
j))→ Uϕ

We have that U(
∧
Khs(ψi , ϕi ) ∧

∧
¬Khs(ψ

′
j , ϕ

′
j)) ∈ Γ.

Thus Uϕ ∈ Γ.
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Completeness

Corollary

If ψ → ϕ ∈ ∆ for all ∆ ∈ ScΓ , then Khs(ψ,ϕ) ∈ Γ .

Proof.

If ψ → ϕ ∈ ∆ for all ∆ ∈ ScΓ , then U(ψ → ϕ) ∈ Γ , then by EMP
Khs(ψ,ϕ) ∈ Γ .
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Completeness

Proposition

For any Khs(ψ,ϕ) ∈ Γ , any ∆ ∈ ScΓ , if ψ ∈ ∆ then there exists
∆

′ ∈ ScΓ such that ϕ ∈ ∆
′
.

Proposition

For any 〈ψ,ϕ〉 ∈ ΣΓ and any ∆ ∈ ScΓ , ∆ has a 〈ψ,ϕ〉-successor.
Moreover, if ψ ∈ ∆ then ArrSta(∆, 〈ψ,ϕ〉) = {Π ∈ ScΓ |
ϕ ∈ Π} 6= ∅.

The first proposition reflects our intuition that if we know how to
achieve ϕ from ψ and we are at a ψ-state, then there must be a
ϕ-state where we could arrive. Moreover, the second one reflects
the intuition that the states where we arrive after executing the
plan for achieving ϕ must be ϕ-states.
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Completeness

Lemma (Truth Lemma)

For any formula ϕ, Mc
Γ ,∆ |= ϕ iff ϕ ∈ ∆.

Proof.

The proof is by structural inducition on LKhs-formulas. We only
focus on the case of Khs(ψ,ϕ).

(⇐) ψ-states
〈ψ,ϕ〉−−−→s ϕ-states.

(⇒) If there exists a plan for achieving ϕ from ψ, then there exists
a one-step plan for achieving ϕ from ψ.

Theorem (Completeness)

SKHS is strongly complete w.r.t. the class of all models.
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Decidability

Theorem (Decidability)

If ϕ is satisfiable then it is satisfiable on a finite model. Indeed, it
is satisfiable on a finite model containing at most 2k states, where
k is the number of subformulas of ϕ. It follows that SKHS is
decidable.

Proof.

Note that given a satisfiable formula ϕ, only the proposition letters
that occur in ϕ matter. Thus we can consider a fragment of LKhs

based on the finite set of proposition letters in ϕ. Clearly, if ϕ is
satisfiable in some model w.r.t. the full set of proposition letters P
then it is satisfiable in a model w.r.t. the restricted set of
proposition letters: we can simply forget the valuation of other
propositions.
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Decidablity

cont.

Note that Khs-formulas hold globally in the canonical model. It
follows that in the canonical model construction for the restricted
language, the maximal consistent sets are essentially different
valuations of the basic propositions in ϕ. Clearly, given the number
of proposition letters k, the maximal size of the canonical model is
2k .
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Bisimulation

The standard bisimulation for the basic multi-modal language is
not adequate, as the languages have different expressivity.

For the Zig and Zag conditions, they should be designed to match
the operator Khs.
One might be tempted to require that, if Z is a bisimulation and
(w ,w

′
) ∈ Z , then these states should have matching successors.

However, the actual evaluation point does not play any role in the
semantic interpretation of Khs.
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Zig and Zag

Here are some notions:
U

σ−→s V whenever V =
⋃

ui∈U
ArrSta(ui , σ),

U →s V whenever there is a σ such that U
σ−→s V .

M,w � Khs(ψ, φ) : [[ψ]]M →s V and V ⊆ [[φ]]M

Khs-Zig: for any LKhs-definable U ⊆ S, if U →s V for some
V ⊆ S, then there is V

′ ⊆ S ′
such that (i) Z [U]→s V

′
and (ii)

for each v
′ ∈ V

′
there is v ∈ V such that vZv

′
.

As the global modality is definable in LKhs, every world in one
model should have a matching world in another model, and
vice-versa.
A-Zig: for all v in S there is v

′
in S ′

such that vZv
′
.
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Bisimulation

Definition (Bisimulation)

Let M = 〈S,Σ,R,V〉 and M′
= 〈S ′

,Σ
′
,R′

,V ′〉 be two models.
A non-empty relation Z ⊆ S × S ′

is called an LKhs-bisimulation
between M and M′

iff wZw
′

implies:
Atom: V (w) = V (w

′
).

Khs-Zig: for any LKhs-definable U ⊆ S, if U →s V for some
V ⊆ S, then there is V

′ ⊆ S ′
such that (i) Z [U]→s V

′
and (ii)

for each v
′ ∈ V

′
there is v ∈ V such that vZv

′
.

Khs-Zag: for any LKhs-definable U
′ ⊆ S ′

, if U
′ →s V

′
for some

V
′ ⊆ S ′

, then there is V ⊆ S such that (i) Z−1[U
′
]→s V and (ii)

for each v ∈ V there is v
′ ∈ V

′
such that vZv

′
.

A-Zig: for all v in S there is v
′

in S ′
such that vZv

′
.

A-Zag: for all v
′

in S ′
there is v in S such that vZv

′
.
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Theorem

If M,w ↔LKhs M
′
,w

′
, then M,w ≡LKhs M

′
,w

′
.

Proof.

The proof is by structural inducition on LKhs-formulas.
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Now we prove the other direction. Here we focus on finite models
rather than image-finite models. This is because the global
modality is definable in LKhs, and thus a finite domain is required
in order to ensure the image-finiteness property.

Theorem

Let M = 〈W ,Σ,R,V〉 and M′
= 〈W ′

,Σ
′
, R′

,V ′〉 be two finite
models. If M,w ≡LKhs M

′
,w

′
, then M,w ↔LKhs M

′
,w

′
.

Proof.

A-Zig: Take v ∈W . Towards a contradiction, suppose that there
is no v

′ ∈W
′

such that vZv
′
. To get a contradiction, we just need

to find a formula α such that M,w � α but M,w
′ 2 α.

For each v
′
i ∈W

′
= {v ′

1, · · · , v
′
n}, there is a formula θi such that

M, v � θi but M, v
′
i 2 θi . Let θ = θ1 ∧ · · · ∧ θn. Then M, v � θ

but M, v
′
i � ¬θ for each w

′
i ∈W

′
. It follows that M,w � ¬U¬θ

but M,w
′
� U¬θ, contradicting M,w ≡LKhs M

′
,w

′
.
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cont.

Khs-Zig: Suppose that [[ψ]]M →s V . It suffices to find a V
′ ⊆W

′

such that Z [[[ψ]]M]→s V
′

and for each v
′ ∈ V

′
there is v ∈ V

such that vZv
′
.

Z [[[ψ]]M] = [[ψ]]M
′
.

Then,we just need to find an appropriate V
′

for [[ψ]]M
′
.

(Assume that [[ψ]]M 6= ∅.) Towards a contradiction, suppose that

for each V
′ ⊆W

′
such that [[ψ]]M

′
→s V

′
, there is s

′

V ′ ∈ V
′

such

that there is no s ∈ V such that sZs
′

V ′ . Then we need to find a

formula β such that M,w � β but M,w
′ 2 β.

For each s ∈ V we have a formula ϕs
V ′ such that M, s � ϕs

V ′ but

M′
, s

′

V ′ 2 ϕs
V ′ . As the models are finite, define θV ′ =

∨
s∈V ϕ

s
V ′

and θ =
∧
{V ′ |[[ψ]]M

′
→sV

′} θV
′ . Then M, s � θ for all s ∈ V , but

there is s
′

V ′ ∈ V
′

such that M′
, s

′

V ′ 2 θ for each V
′

such that

[[ψ]]M
′
→s V

′
. It follows that M,w � Khs(ψ, θ) but

M′
,w

′ 2 Khs(ψ, θ). Contradiction.
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