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2 Forcing
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Our goal: Con(ZFC) → Con(ZFC + ¬CH)

Theorem(Godel)
T ⊢ φ⇔ T |= φ

So if there is a M |= ZFC, we want to find a new model N |= ZFC + ¬CH

We will construct a model M[G], s.t G /∈ M, M ⊆ M[G]
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Generic extensions

– M transitive set, x ∈ M ∧ y ∈ x ⇒ y ∈ M

– A p.o. of M is a triple, < P,≤,1 > s.t. ≤ partially orders P and 1 is a
largest element of P (i.e., ∀p ∈ P(p ≤ 1)), and P ∈ M.

– Let G ⊆ P, we call G is a filter on P:
G ̸= 0
∀p, q ∈ P((p ∈ G ∧ q ∈ G) → ∃r ∈ G(r ≤ p ∧ r ≤ q))
∀p, q ∈ P((p ≤ q ∧ p ∈ G) → q ∈ G)
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Generic extensions

– D ⊆ P, D is dense in P, if ∀p ∈ P,∃q ∈ D(q ≤ p).

– G is P− generic over M iff G is a filter on P and for all dense
D ⊆ P,D ∈ M → G ∩ D ̸= 0.

Lemma
if M is countable and p ∈ P, then there is a G which is P− generic over M
such that p ∈ G.

Proof: M is countable, so let Dn(n ∈ ω) enumerate all dense subsets of P
which are in M.

Then choose a sequence qn(n ∈ ω) so that p = q0 ≥ q1 ≥ ... and
qn+1 ∈ Dn. Let G be the filter generated by {qn : n ∈ ω}.

Remark: Dense subset can be replaced by open dense subset or maximum
anti-chain.
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Generic extensions

Lemma
If M is a transitive model of ZFC, P ∈ M is a p.o. such that ∀p ∈ P
∃q, r ∈ P (q ≤ p∧ r ≤ p∧q ⊥ r), and G is P−generic over M, then G /∈ M.

Remark: If condition fails for P, then there is a filter G on P which
intersects all dense subsets of P, and if P ∈ M, then G ∈ M.

Then forcing to such a P will be trivial. Thus, almost all p.o. we
considered satisfy this condition, although it is never needed in the
abstract treatment of forcing.
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Generic extensions

Let M be a c.t.m for ZFC, with P a p.o. in M and G is P− generic
over M.

We shall show how to construct another c.t.m for ZFC, called M[G],
which will satisfy M ⊂ M[G], o(M) = o(M[G]), and G ∈ M[G].

M[G] will be the least extension of M to a c.t.m for ZFC containing
G. The fact that G ∈ M[G] will imply, by Lemma, that in most cases
M ̸= M[G].

Roughly, this will be the set of all sets which can be constructed from
G by applying set-theoretic processes definable in M.

Each element of M[G] will have a name in M, which tells how it has
been constructed from G.

People living within M will be able to comprehend a name, τ , for an
object in M[G], but they will not in general be able to decide the object,
τG, that τ names, since this will require a knowledge of G.
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Generic extensions

Definition
τ is a P-name iff τ is a relation and

∀ < σ, p >∈ τ [σ is a P-name ∧p ∈ P].

The collection of P-name will be a proper class if P ̸= 0.

And this definition must be understood as a definition by transfinite
recursion. Formally, one defines the characteristic function of the P-name,
H(P, τ), by

H(P, τ) = 1 iff τ is a relation ∧ ∀ < σ, p >∈ τ [H(P, σ) = 1 ∧ p ∈ P].
H(P, τ) = 0 otherwise.

Wang Yunsong (SMS) Forcing September 17, 2019 8 / 25



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Generic extensions

Definition
τ is a P-name iff τ is a relation and

∀ < σ, p >∈ τ [σ is a P-name ∧p ∈ P].

The collection of P-name will be a proper class if P ̸= 0.

And this definition must be understood as a definition by transfinite
recursion. Formally, one defines the characteristic function of the P-name,
H(P, τ), by

H(P, τ) = 1 iff τ is a relation ∧ ∀ < σ, p >∈ τ [H(P, σ) = 1 ∧ p ∈ P].
H(P, τ) = 0 otherwise.

Wang Yunsong (SMS) Forcing September 17, 2019 8 / 25



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Generic extensions

Definition
VP is the class of P-names. If M is a transitive model of ZFC and P ∈ M,
MP = VP ∩ M. Or, by absoluteness,

MP = {τ ∈ M : (τ is a P-name)M}.

When forcing over M, use is made only of the P-names in MP, which
we may think of as being defined within M.

When M |= ZFC, τ is a P-name ⇔ (τ is a P-name )M.
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Generic extensions

Definition
val(τ,G) = {val(σ,G) : ∃p ∈ G(< σ, p >∈ τ)}. We also write τG for
val(τ,G). And 0 is also a P-name, we define that 0G = 0 for any G.

Definition
If M is a transitive model of ZFC, P ∈ M, and G ⊂ P, then

M[G] = {τG : τ ∈ MP}.

Lemma
If N is a transitive model of ZFC with M ⊂ N and G ∈ N, then M[G] ⊂ N.

Thus, once we check that M[G] is indeed a transitive extension of M
containing G and satisfying ZFC, it will be the least such extension.
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Generic extensions

First, we want to check that M ⊆ M[G]:

Check Name
–x̆, x ∈ M (check name)

x̆ = {< y̆,1P > |y ∈ x}
e.g. 0̆ = 0, ˘{0} = {< 0,1P >}

Lemma
If M is a transitive model of ZFC, P is a p.o. in M, and G is a non-empty
filter on P, then:
(a)∀x ∈ M[x̆ ∈ MP ∧ val(x̆,G) = x].
(b)M ⊂ M[G].
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Generic extensions

Lemma
G /∈ M ∧ G ∈ M[G].

Proof:
(G /∈ M) If not, P \ G ⊂ P. For P, we know that ∀p ∈ P∃q, r ∈ P, q⊥r. So
P \ G is dense. Contradiction!

(G ∈ M[G]) we need to find a name that represents it.
–Γ = {< p̆, p > |p ∈ P}, and ΓG = G.

□

Remark: M[G] satisfy Axiom of Extension, Union, Pairing, Foundation.
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Generic extensions

Lemma
M[G] is transitive.

Proof: τG ∈ M[G], τ ∈ MP

τG = {σG| < σ, p >∈ τ, p ∈ G}
So σG ∈ M[G]

□
Lemma
Ord ∩ M = Ord ∩ M[G].

Proof: M ⊆ M[G], and they are transitive, so Ord ∩ M ⊆ Ord ∩ M[G].
For any set A, we define rank(A) = min{α|A ∈ Vα}.
rk(A) = sup{rk(B) + 1|B ∈ A}, and ∀α, rk(α) = α.
Ord ∩ M = {rk(A)|A ∈ M}, Ord ∩ M[G] = {rk(A)|A ∈ M[G]}.
We want to prove that ∀τ, rk(τG) ≤ rk(τ) ∈ Ord ∩ M, then we

will know ∀A ∈ M[G], rk(A) ∈ Ord ∩ M.
□
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Forcing

Now we should know that for a given φ if M[G] |= φ.

First, we defind ⊩:

p ⊩M,P φ iff for any (M,P)− generic G, if p ∈ G, then M[G] |= φ.

That is a semantic definition, later we need to find a syntax
definition. And then we prove that they are equivalent.
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Forcing

Let us consider first a specific example.
M is a c.t.m for ZFC.
P is the set of finite partial functions from ω to 2 ordered by reverse
inclusion.
1P is the empty function.
And < P,≤,1 >∈ M, since its definition is absolute for transitive

models of ZFC.

If G is a filter on P, fG = ∪G is a function and dom(fG) = ω.
G ∈ M[G] and fG = ∪G, fG ∈ M[G] will follow immediately from the

absoluteness of ∪ for transitive models of ZF.
However, we may check fG ∈ M[G] directly, Let

Φ = {< ˘(< n,m >), p >: p ∈ P ∧ n ∈ dom(p) ∧ p(n) = m}
ΦG = {< n,m >: ∃p ∈ G(n ∈ dom(p) ∧ p(n) = m)} = fG.

Thus, fG ∈ M[G].
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Forcing

If G is P− generic over M, then G /∈ M.
For any g : ω → 2, if g ∈ M, E = {p : p ̸⊂ g} is dense. So G ∩ E ̸= 0

means that fG ̸= g. So fG /∈ M.

So in this example, we use forcing to find a new real number which is
not in M.

Also, we know that {< 0, 0 >} ⊩ ˙fG(0) = 0 and
{< 0, 1 >} ⊩ ˙fG(0) = 1.
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Forcing

Now we define ⊩∗.
p ⊩∗

M,P φ(τ1, τ2, ..., τn), τ1, τ2, ..., τn are names in MP, φ(x1, ..., xn) is
a formula.

(Induction of the complexity of names and formula)

(a) (τ1 = τ2), τ1 = {< π1, s1 > | . . . }, τ2 = {< π2, s2 > | . . . }.
(α) for all < π1, s1 >∈ τ1,

{q ≤ p|q ≤ s1 → ∃ < π2, s2 >∈ τ2(q ≤ s2 ∧ q ⊩∗ π1 = π2)} is dense below
p, and

(β) for all < π2, s2 >∈ τ2,
{q ≤ p|q ≤ s2 → ∃ < π1, s1 >∈ τ1(q ≤ s1 ∧ q ⊩∗ π1 = π2)} is dense below
p.

A is dense below p means that ∀q ≤ p∃r ∈ A(r ≤ q).
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Forcing

(b)(τ1 ∈ τ2), τ2 = {< π2, s2 > |...}
{q ≤ p|∃ < π2, s2 >∈ τ2(q ≤ s2 ∧ q ⊩∗ τ1 = π1)} is dense below p.

(c)(φ ∧ ψ)
p ⊩∗ φ ∧ ψ iff p ⊩∗ φ and p ⊩∗ ψ.

(d)(¬φ)
p ⊩∗ ¬φ iff {q ≤ p|q ̸⊩∗ φ} is dense below p.

(e)(∃xφ)
p ⊩∗ ∃xφ(x, . . . ) iff {r ≤ p|∃σ ∈ MP(r ⊩∗ φ(σ, . . . ))} is dense below

p.
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{q ≤ p|∃ < π2, s2 >∈ τ2(q ≤ s2 ∧ q ⊩∗ τ1 = π1)} is dense below p.

(c)(φ ∧ ψ)
p ⊩∗ φ ∧ ψ iff p ⊩∗ φ and p ⊩∗ ψ.

(d)(¬φ)
p ⊩∗ ¬φ iff {q ≤ p|q ̸⊩∗ φ} is dense below p.

(e)(∃xφ)
p ⊩∗ ∃xφ(x, . . . ) iff {r ≤ p|∃σ ∈ MP(r ⊩∗ φ(σ, . . . ))} is dense below

p.
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Our goal:p ⊩∗
M,P φ⇔ p ⊩M,P φ

Lemma
(p ⊩ φ) ∧ (q ≤ p) → q ⊩ φ
p ⊩ φ and p ⊩ ψ → p ⊩ φ ∧ ψ

Lemma
TFAE:

1 p ⊩∗ φ(τ⃗).
2 {q ≤ p|q ⊩∗ φ(τ⃗)} is dense below p.
3 r ≤ p, r ⊩∗ φ(τ⃗).
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Proof:

(a)(b) By definition.

(1)c p ⊩∗ φ ∧ ψ
↔ p ⊩∗ φ and p ⊩∗ ψ
↔ ∀r ≤ p, r ⊩∗ φ and r ⊩∗ ψ (By induction)
↔ ∀r ≤ p, r ⊩∗ φ ∧ ψ (3)c
→ {q ≤ p|q ⊩∗ φ ∧ ψ} is dense below p. (2)c
↔ {q ≤ p|q ⊩∗ φ and q ⊩∗ ψ} is dense below p.
→ {q ≤ p|q ⊩∗ φ} is dense below p and {q ≤ p|q ⊩∗ ψ} is dense

below p.
↔ p ⊩∗ φ and p ⊩∗ ψ
↔ (1)c
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(1)d p ⊩∗ ¬φ
↔ {q ≤ p|q ̸⊩∗ φ} is dense below p.

↔ no q ≤ p, q ⊩∗ φ
→ ∀r ≤ p, no q ≤ r, q ⊩∗ φ
→ (3)d
→ (2)d {q ≤ p|q ⊩∗ ¬φ} is dense below p
↔ {q ≤ p| no r ≤ q, r ⊩∗ φ} is dense below p
↔ (1d)
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(1)e p ⊩∗ ∃xφ
↔ {r ≤ p|∃σ ∈ MP(r ⊩∗ φ)} is dense below p

↔ ∀q ≤ p, {r ≤ q|∃σ ∈ MP(r ⊩∗ φ)} is dense below q
↔ (3)e
→ (2)e {r ≤ p|r ⊩∗ ∃xφ} is dense below p
↔ {r ≤ p|{q ≤ r|∃σ ∈ MP(q ⊩∗ φ)}is dense below r}is dense below p
→ (1)e
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Theorem
(1) p ∈ G, p ⊩∗ φ(τ1, . . . , τn)

⇒ M[G] |= φ(τ1G , . . . , τnG)
(2) M[G] |= φ(τ1G , . . . , τnG)

⇒ ∃p ∈ G, p ⊩∗ φ(τ1, . . . , τn)

Corollary
(1) p ⊩ φ⇔ p ⊩∗ φ
(2) M[G] |= φ(τ1G , . . . , τnG) ⇔ ∃p ∈ G(p ⊩ φ(τ1, . . . , τn))

Proof of Corollary:
(1) (⇐) By the Theorem

(⇒) p ⊩ φ, we need to prove that {r ≤ p|r ⊩∗ φ} is dense below p.
If not, there is a G, s.t. G ∩ {r ≤ p|r ⊩∗ φ} = 0. Then M[G] ̸|= φ,

Contradiction!
(1) ⇒ (2)
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Forcing

Part of the proof:
(1) (τ1 = τ2) We assume p ⊩∗ τ1 = τ2 and p ∈ G. We must show
τ1G = τ2G .

We shall show τ1G ⊂ τ2G
Every element of τ1G is of the form π1G , where < π1, s1 >∈ τ1 for

some s1 ∈ G.

Fix r ∈ G with r ≤ p and r ≤ s1. Then r ⊩∗ τ1 = τ2, so there is a
q ∈ G such that q ≤ r and s.t. q ≤ s1 which implies

∃ < π2, s2 >∈ τ2(q ≤ s2 ∧ q ⊩∗ π1 = π2).(*)

So fix < π2, s2 > as in (*), then s2 ∈ G, so π2G ∈ τ2G .
Also, by (1) for π1 = π2 (IH), q ⊩∗ π1 = π2 implies π1G = π2G , so

π1G ∈ τ2G .
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The End
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