An introduction to forcing

Wang Yunsong

School of Mathematical Science

1600010615@pku.edu.cn

September 17, 2019

э

- 2

Our goal: $Con(ZFC) \rightarrow Con(ZFC + \neg CH)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Our goal: $Con(ZFC) \rightarrow Con(ZFC + \neg CH)$

Theorem(Godel) $T \vdash \varphi \Leftrightarrow T \models \varphi$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Our goal: $Con(ZFC) \rightarrow Con(ZFC + \neg CH)$

Theorem(Godel) $T \vdash \varphi \Leftrightarrow T \models \varphi$

So if there is a $M \models ZFC$, we want to find a new model $N \models ZFC + \neg CH$

We will construct a model M[G], s.t $G \notin M$, $M \subseteq M[G]$

イロト イポト イヨト イヨト 二日

– M transitive set, $x \in M \land y \in x \Rightarrow y \in M$

- 2

- *M* transitive set, $x \in M \land y \in x \Rightarrow y \in M$

- A p.o. of *M* is a triple, $\langle \mathbb{P}, \leq, \mathbb{1} \rangle$ s.t. \leq partially orders \mathbb{P} and $\mathbb{1}$ is a largest element of \mathbb{P} (i.e., $\forall p \in \mathbb{P}(p \leq \mathbb{1})$), and $\mathbb{P} \in M$.

- 3

イロト イポト イヨト イヨト

- *M* transitive set, $x \in M \land y \in x \Rightarrow y \in M$
- A p.o. of *M* is a triple, $\langle \mathbb{P}, \leq, \mathbb{1} \rangle$ s.t. \leq partially orders \mathbb{P} and $\mathbb{1}$ is a largest element of \mathbb{P} (i.e., $\forall p \in \mathbb{P}(p \leq \mathbb{1})$), and $\mathbb{P} \in M$.
- Let $G \subseteq \mathbb{P}$, we call G is a filter on \mathbb{P} :
 - *G* ≠ 0
 - $\forall p, q \in \mathbb{P}((p \in G \land q \in G) \rightarrow \exists r \in G(r \leq p \land r \leq q))$
 - $\forall p, q \in \mathbb{P}((p \leq q \land p \in G) \rightarrow q \in G)$

イロト イポト イヨト イヨト 二日

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- *G* is \mathbb{P} - *generic* over *M* iff *G* is a filter on \mathbb{P} and for all dense $D \subseteq \mathbb{P}, D \in M \rightarrow G \cap D \neq 0$.

- 3

イロト イポト イヨト イヨト

- *G* is \mathbb{P} - *generic* over *M* iff *G* is a filter on \mathbb{P} and for all dense $D \subseteq \mathbb{P}, D \in M \rightarrow G \cap D \neq 0$.

Lemma

if *M* is countable and $p \in \mathbb{P}$, then there is a *G* which is \mathbb{P} – *generic* over *M* such that $p \in G$.

(日) (四) (日) (日) (日)

- *G* is \mathbb{P} - *generic* over *M* iff *G* is a filter on \mathbb{P} and for all dense $D \subseteq \mathbb{P}, D \in M \rightarrow G \cap D \neq 0$.

Lemma

if *M* is countable and $p \in \mathbb{P}$, then there is a *G* which is \mathbb{P} – *generic* over *M* such that $p \in G$.

Proof: M is countable, so let $D_n(n \in \omega)$ enumerate all dense subsets of \mathbb{P} which are in M.

Then choose a sequence $q_n(n \in \omega)$ so that $p = q_0 \ge q_1 \ge ...$ and $q_{n+1} \in D_n$. Let G be the filter generated by $\{q_n : n \in \omega\}$.

< □ > < □ > < □ > < □ > < □ > < □ >

- *G* is \mathbb{P} - *generic* over *M* iff *G* is a filter on \mathbb{P} and for all dense $D \subseteq \mathbb{P}, D \in M \rightarrow G \cap D \neq 0$.

Lemma

if *M* is countable and $p \in \mathbb{P}$, then there is a *G* which is \mathbb{P} – *generic* over *M* such that $p \in G$.

Proof: M is countable, so let $D_n(n \in \omega)$ enumerate all dense subsets of \mathbb{P} which are in M.

Then choose a sequence $q_n(n \in \omega)$ so that $p = q_0 \ge q_1 \ge ...$ and $q_{n+1} \in D_n$. Let G be the filter generated by $\{q_n : n \in \omega\}$.

Remark: Dense subset can be replaced by open dense subset or maximum anti-chain.

Lemma

If M is a transitive model of ZFC, $\mathbb{P} \in M$ is a p.o. such that $\forall p \in \mathbb{P}$ $\exists q, r \in \mathbb{P} \ (q \leq p \land r \leq p \land q \perp r)$, and G is \mathbb{P} -generic over M, then $G \notin M$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lemma

If M is a transitive model of ZFC, $\mathbb{P} \in M$ is a p.o. such that $\forall p \in \mathbb{P} \\ \exists q, r \in \mathbb{P} \ (q \leq p \land r \leq p \land q \perp r)$, and G is \mathbb{P} -generic over M, then $G \notin M$.

Remark: If condition fails for \mathbb{P} , then there is a filter G on \mathbb{P} which intersects all dense subsets of \mathbb{P} , and if $\mathbb{P} \in M$, then $G \in M$.

Then forcing to such a \mathbb{P} will be trivial. Thus, almost all p.o. we considered satisfy this condition, although it is never needed in the abstract treatment of forcing.

(4) (日本)

3

・ロト ・四ト ・ヨト

We shall show how to construct another c.t.m for ZFC, called M[G], which will satisfy $M \subset M[G]$, o(M) = o(M[G]), and $G \in M[G]$.

3

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We shall show how to construct another c.t.m for ZFC, called M[G], which will satisfy $M \subset M[G]$, o(M) = o(M[G]), and $G \in M[G]$.

M[G] will be the least extension of M to a c.t.m for ZFC containing G. The fact that $G \in M[G]$ will imply, by Lemma, that in most cases $M \neq M[G]$.

< □ > < □ > < □ > < □ > < □ > < □ >

We shall show how to construct another c.t.m for ZFC, called M[G], which will satisfy $M \subset M[G]$, o(M) = o(M[G]), and $G \in M[G]$.

M[G] will be the least extension of M to a c.t.m for ZFC containing G. The fact that $G \in M[G]$ will imply, by Lemma, that in most cases $M \neq M[G]$.

Roughly, this will be the set of all sets which can be constructed from G by applying set-theoretic processes definable in M.

< □ > < □ > < □ > < □ > < □ > < □ >

We shall show how to construct another c.t.m for ZFC, called M[G], which will satisfy $M \subset M[G]$, o(M) = o(M[G]), and $G \in M[G]$.

M[G] will be the least extension of M to a c.t.m for ZFC containing G. The fact that $G \in M[G]$ will imply, by Lemma, that in most cases $M \neq M[G]$.

Roughly, this will be the set of all sets which can be constructed from G by applying set-theoretic processes definable in M.

Each element of M[G] will have a *name* in M, which tells how it has been constructed from G.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We shall show how to construct another c.t.m for ZFC, called M[G], which will satisfy $M \subset M[G]$, o(M) = o(M[G]), and $G \in M[G]$.

M[G] will be the least extension of M to a c.t.m for ZFC containing G. The fact that $G \in M[G]$ will imply, by Lemma, that in most cases $M \neq M[G]$.

Roughly, this will be the set of all sets which can be constructed from G by applying set-theoretic processes definable in M.

Each element of M[G] will have a *name* in M, which tells how it has been constructed from G.

People living within M will be able to comprehend a name, τ , for an object in M[G], but they will not in general be able to decide the object, τ_G , that τ names, since this will require a knowledge of G.

イロト 不得 トイヨト イヨト 二日

$$\begin{split} \tau \text{ is a } \mathbb{P}\text{-name iff } \tau \text{ is a relation and} \\ \forall < \sigma, p > \in \tau[\sigma \text{ is a } \mathbb{P}\text{-name } \land p \in \mathbb{P}]. \end{split}$$

3

A D N A B N A B N A B N

au is a \mathbb{P} -name iff au is a relation and $\forall < \sigma, p > \in \tau[\sigma \text{ is a } \mathbb{P}\text{-name } \land p \in \mathbb{P}].$

The collection of \mathbb{P} -name will be a proper class if $\mathbb{P} \neq 0$.

And this definition must be understood as a definition by transfinite recursion. Formally, one defines the characteristic function of the \mathbb{P} -name, $H(\mathbb{P}, \tau)$, by $H(\mathbb{P}, \tau) = 1$ iff τ is a relation $\land \forall < \sigma, p > \in \tau[H(\mathbb{P}, \sigma) = 1 \land p \in \mathbb{P}].$

$$\forall f = 1 \text{ iff } \tau \text{ is a relation } \land \forall < \sigma, p > \in \tau[H(\mathbb{P}, \sigma) = 1 \land p \in H(\mathbb{P}, \tau) = 0 \text{ otherwise.}$$

< 日 > < 同 > < 三 > < 三 >

 $V^{\mathbb{P}}$ is the class of \mathbb{P} -names. If M is a transitive model of ZFC and $\mathbb{P} \in M$, $M^{\mathbb{P}} = V^{\mathbb{P}} \cap M$. Or, by absoluteness,

 $M^{\mathbb{P}} = \{ \tau \in M : (\tau \text{ is a } \mathbb{P}\text{-name})^M \}.$

< A > <

 $V^{\mathbb{P}}$ is the class of \mathbb{P} -names. If M is a transitive model of ZFC and $\mathbb{P} \in M$, $M^{\mathbb{P}} = V^{\mathbb{P}} \cap M$. Or, by absoluteness, $M^{\mathbb{P}} = \{\tau \in M : (\tau \text{ is a } \mathbb{P}\text{-name})^M\}.$

When forcing over M, use is made only of the \mathbb{P} -names in $M^{\mathbb{P}}$, which we may think of as being defined within M.

When $M \models ZFC$, τ is a \mathbb{P} -name $\Leftrightarrow (\tau \text{ is a } \mathbb{P}\text{-name })^M$.

 $val(\tau, G) = \{val(\sigma, G) : \exists p \in G(\langle \sigma, p \rangle \in \tau)\}$. We also write τ_G for $val(\tau, G)$. And 0 is also a \mathbb{P} -name, we define that $0_G = 0$ for any G.

3

イロト イポト イヨト イヨト

 $val(\tau, G) = \{val(\sigma, G) : \exists p \in G(\langle \sigma, p \rangle \in \tau)\}$. We also write τ_G for $val(\tau, G)$. And 0 is also a \mathbb{P} -name, we define that $0_G = 0$ for any G.

Definition

If M is a transitive model of ZFC, $\mathbb{P} \in M$, and $G \subset \mathbb{P}$, then $M[G] = \{\tau_G : \tau \in M^{\mathbb{P}}\}.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $val(\tau, G) = \{val(\sigma, G) : \exists p \in G(\langle \sigma, p \rangle \in \tau)\}$. We also write τ_G for $val(\tau, G)$. And 0 is also a \mathbb{P} -name, we define that $0_G = 0$ for any G.

Definition

If M is a transitive model of ZFC, $\mathbb{P} \in M$, and $G \subset \mathbb{P}$, then $M[G] = \{\tau_G : \tau \in M^{\mathbb{P}}\}.$

Lemma

If N is a transitive model of ZFC with $M \subset N$ and $G \in N$, then $M[G] \subset N$.

Thus, once we check that M[G] is indeed a transitive extension of M containing G and satisfying ZFC, it will be the least such extension.

< □ > < □ > < □ > < □ > < □ > < □ >

First, we want to check that $M \subseteq M[G]$:

Check Name

$$\begin{array}{l} -\breve{x}, \ x \in M \ (\text{check name}) \\ \breve{x} = \{ < \breve{y}, \mathbb{1}_{\mathbb{P}} > | y \in x \} \\ \text{e.g.} \ \breve{0} = 0, \ \{\breve{0}\} = \{ < 0, \mathbb{1}_{\mathbb{P}} > \} \end{array}$$

3

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

First, we want to check that $M \subseteq M[G]$:

Check Name

$$\begin{array}{l} -\breve{x}, \ x \in M \ (\text{check name}) \\ \breve{x} = \{ < \breve{y}, \mathbb{1}_{\mathbb{P}} > | y \in x \} \\ \text{e.g.} \ \breve{0} = 0, \ \{\breve{0}\} = \{ < 0, \mathbb{1}_{\mathbb{P}} > \} \end{array}$$

Lemma

If M is a transitive model of ZFC, \mathbb{P} is a p.o. in M, and G is a non-empty filter on \mathbb{P} , then: (a) $\forall x \in M[\check{x} \in M^{\mathbb{P}} \land val(\check{x}, G) = x].$ (b) $M \subset M[G].$

Lemma $G \notin M \land G \in M[G].$

- 2

Lemma

 $G \notin M \land G \in M[G].$

Proof:

 $(G \notin M)$ If not, $\mathbb{P} \setminus G \subset \mathbb{P}$. For \mathbb{P} , we know that $\forall p \in \mathbb{P} \exists q, r \in \mathbb{P}, q \perp r$. So $\mathbb{P} \setminus G$ is dense. Contradiction!

 $(G \in M[G])$ we need to find a name that represents it. - $\Gamma = \{ \langle \breve{p}, p \rangle | p \in \mathbb{P} \}$, and $\Gamma_G = G$.

- 3

イロト イポト イヨト イヨト

Lemma

 $G \notin M \land G \in M[G].$

Proof: $(G \notin M)$ If not, $\mathbb{P} \setminus G \subset \mathbb{P}$. For \mathbb{P} , we know that $\forall p \in \mathbb{P} \exists q, r \in \mathbb{P}, q \perp r$. So $\mathbb{P} \setminus G$ is dense. Contradiction!

 $(G \in M[G])$ we need to find a name that represents it. - $\Gamma = \{ \langle \breve{p}, p \rangle | p \in \mathbb{P} \}$, and $\Gamma_G = G$.

Remark: M[G] satisfy Axiom of Extension, Union, Pairing, Foundation.

- 3

イロト イポト イヨト イヨト

Lemma M[G] is transitive.

(日)

Lemma

M[G] is transitive.

 $\begin{array}{ll} \mathsf{Proof:} & \tau_{G} \in M[G], \tau \in M^{\mathbb{P}} \\ & \tau_{G} = \{\sigma_{G} | < \sigma, p > \in \tau, p \in G\} \\ & \mathsf{So} \ \sigma_{G} \in M[G] \end{array}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Lemma

M[G] is transitive.

Proof:
$$\tau_G \in M[G], \tau \in M^{\mathbb{P}}$$

 $\tau_G = \{\sigma_G | < \sigma, p > \in \tau, p \in G\}$
So $\sigma_G \in M[G]$

Lemma

 $Ord \cap M = Ord \cap M[G].$

3

<ロト < 四ト < 三ト < 三ト
Lemma

M[G] is transitive.

Proof:
$$\tau_G \in M[G], \tau \in M^{\mathbb{P}}$$

 $\tau_G = \{\sigma_G | < \sigma, p > \in \tau, p \in G\}$
So $\sigma_G \in M[G]$

Lemma

 $Ord \cap M = Ord \cap M[G].$

Proof: $M \subseteq M[G]$, and they are transitive, so $Ord \cap M \subseteq Ord \cap M[G]$. For any set A, we define $rank(A) = min\{\alpha | A \in V_{\alpha}\}$. $rk(A) = sup\{rk(B) + 1 | B \in A\}$, and $\forall \alpha, rk(\alpha) = \alpha$. $Ord \cap M = \{rk(A) | A \in M\}$, $Ord \cap M[G] = \{rk(A) | A \in M[G]\}$. We want to prove that $\forall \tau, rk(\tau_G) \leq rk(\tau) \in Ord \cap M$, then we will know $\forall A \in M[G]$, $rk(A) \in Ord \cap M$.

Now we should know that for a given φ if $M[G] \models \varphi$.

イロト イヨト イヨト イヨト

Now we should know that for a given φ if $M[G] \models \varphi$. First, we defind \Vdash :

 $p \Vdash_{M,\mathbb{P}} \varphi$ iff for any $(M,\mathbb{P}) - generic \ \mathsf{G}$, if $p \in G$, then $M[G] \models \varphi$.

That is a semantic definition, later we need to find a syntax definition. And then we prove that they are equivalent.

Let us consider first a specific example.

- *M* is a c.t.m for ZFC.
- \mathbb{P} is the set of finite partial functions from ω to 2 ordered by reverse inclusion.
- $\mathbb{1}_{\mathbb{P}}$ is the empty function.

And $< \mathbb{P}, \leq, \mathbb{1} > \in M$, since its definition is absolute for transitive models of ZFC.

3

A E N A E N

Let us consider first a specific example.

- *M* is a c.t.m for ZFC.
- $\mathbb P$ is the set of finite partial functions from ω to 2 ordered by reverse inclusion.
- $\mathbb{1}_{\mathbb{P}}$ is the empty function.

And $< \mathbb{P}, \leq, \mathbb{1} > \in M$, since its definition is absolute for transitive models of ZFC.

If G is a filter on \mathbb{P} , $f_G = \cup G$ is a function and $dom(f_G) = \omega$.

- 34

イロト イポト イヨト イヨト

Let us consider first a specific example.

- *M* is a c.t.m for ZFC.
- P is the set of finite partial functions from ω to 2 ordered by reverse inclusion.
- $\mathbb{1}_{\mathbb{P}}$ is the empty function.

And $< \mathbb{P}, \leq, \mathbb{1} > \in M$, since its definition is absolute for transitive models of ZFC.

If G is a filter on \mathbb{P} , $f_G = \bigcup G$ is a function and $dom(f_G) = \omega$. $G \in M[G]$ and $f_G = \bigcup G$, $f_G \in M[G]$ will follow immediately from the absoluteness of \bigcup for transitive models of ZF.

- 3

イロト イポト イヨト イヨト

Let us consider first a specific example.

- *M* is a c.t.m for ZFC.
- \mathbb{P} is the set of finite partial functions from ω to 2 ordered by reverse inclusion.
- $\mathbb{1}_{\mathbb{P}}$ is the empty function.

And $< \mathbb{P}, \leq, \mathbb{1} > \in M$, since its definition is absolute for transitive models of ZFC.

If G is a filter on \mathbb{P} , $f_G = \bigcup G$ is a function and $dom(f_G) = \omega$. $G \in M[G]$ and $f_G = \bigcup G$, $f_G \in M[G]$ will follow immediately from the absoluteness of \bigcup for transitive models of ZF.

However, we may check $f_G \in M[G]$ directly, Let

$$\Phi = \{ \langle (\langle n, m \rangle), p \rangle : p \in \mathbb{P} \land n \in dom(p) \land p(n) = m \} \\ \Phi_G = \{ \langle n, m \rangle : \exists p \in G(n \in dom(p) \land p(n) = m) \} = f_G. \\ \text{Thus, } f_G \in M[G].$$

If G is \mathbb{P} – generic over M, then $G \notin M$. For any $g: \omega \to 2$, if $g \in M$, $E = \{p: p \not\subset g\}$ is dense. So $G \cap E \neq 0$ means that $f_G \neq g$. So $f_G \notin M$.

Image: A matrix and a matrix

If G is \mathbb{P} - generic over M, then $G \notin M$. For any $g : \omega \to 2$, if $g \in M$, $E = \{p : p \not\subset g\}$ is dense. So $G \cap E \neq 0$ means that $f_G \neq g$. So $f_G \notin M$.

So in this example, we use forcing to find a new real number which is not in M.

If G is \mathbb{P} - generic over M, then $G \notin M$. For any $g : \omega \to 2$, if $g \in M$, $E = \{p : p \not\subset g\}$ is dense. So $G \cap E \neq 0$ means that $f_G \neq g$. So $f_G \notin M$.

So in this example, we use forcing to find a new real number which is not in M.

Also, we know that $\{<0,0>\} \Vdash \dot{f}_G(0) = 0$ and $\{<0,1>\} \Vdash \dot{f}_G(0) = 1.$

Now we define \Vdash^* . $p \Vdash^*_{M,\mathbb{P}} \varphi(\tau_1, \tau_2, ..., \tau_n)$, $\tau_1, \tau_2, ..., \tau_n$ are names in $M^{\mathbb{P}}$, $\varphi(x_1, ..., x_n)$ is a formula.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Now we define \Vdash^* . $p \Vdash^*_{M,\mathbb{P}} \varphi(\tau_1, \tau_2, ..., \tau_n)$, $\tau_1, \tau_2, ..., \tau_n$ are names in $M^{\mathbb{P}}$, $\varphi(x_1, ..., x_n)$ is a formula.

(Induction of the complexity of names and formula)

(a)
$$(\tau_1 = \tau_2), \tau_1 = \{ < \pi_1, s_1 > | ... \}, \tau_2 = \{ < \pi_2, s_2 > | ... \}.$$

(α) for all $< \pi_1, s_1 > \in \tau_1$,
 $\{q \le p | q \le s_1 \to \exists < \pi_2, s_2 > \in \tau_2 (q \le s_2 \land q \Vdash^* \pi_1 = \pi_2)\}$ is dense below
 p , and
(β) for all $< \pi_2, s_2 > \in \tau_2$,
 $\{q \le p | q \le s_2 \to \exists < \pi_1, s_1 > \in \tau_1 (q \le s_1 \land q \Vdash^* \pi_1 = \pi_2)\}$ is dense below
 p .

A is dense below p means that $\forall q \leq p \exists r \in A(r \leq q)$.

イロト 不得下 イヨト イヨト

(b)($\tau_1 \in \tau_2$), $\tau_2 = \{ < \pi_2, s_2 > | ... \}$ $\{q \le p | \exists < \pi_2, s_2 > \in \tau_2 (q \le s_2 \land q \Vdash^* \tau_1 = \pi_1) \}$ is dense below p.

イロト 不得下 イヨト イヨト 二日

(b)
$$(\tau_1 \in \tau_2), \ \tau_2 = \{ < \pi_2, s_2 > | ... \}$$

 $\{q \le p | \exists < \pi_2, s_2 > \in \tau_2 (q \le s_2 \land q \Vdash^* \tau_1 = \pi_1) \}$ is dense below p.

$$(\mathsf{c})(arphi\wedge\psi)\ p\Vdash^*arphi\wedge\psi\ ext{iff}\ p\Vdash^*arphi\ ext{and}\ p\Vdash^*\psi.$$

(b)
$$(\tau_1 \in \tau_2), \ \tau_2 = \{ < \pi_2, s_2 > | ... \}$$

 $\{q \le p | \exists < \pi_2, s_2 > \in \tau_2 (q \le s_2 \land q \Vdash^* \tau_1 = \pi_1) \}$ is dense below p.

$$\begin{array}{c} (\mathsf{c})(\varphi \wedge \psi) \\ p \Vdash^* \varphi \wedge \psi \text{ iff } p \Vdash^* \varphi \text{ and } p \Vdash^* \psi. \end{array}$$

$$\begin{array}{c} (\mathsf{d})(\neg\varphi) \\ p \Vdash^* \neg\varphi \text{ iff } \{q \leq p | q \not\Vdash^* \varphi\} \text{ is dense below } p \end{array}$$

(b)
$$(\tau_1 \in \tau_2), \ \tau_2 = \{ < \pi_2, s_2 > | ... \}$$

 $\{q \le \rho | \exists < \pi_2, s_2 > \in \tau_2 (q \le s_2 \land q \Vdash^* \tau_1 = \pi_1) \}$ is dense below p.

$$\begin{array}{c} (\mathsf{c})(\varphi \wedge \psi) \\ p \Vdash^* \varphi \wedge \psi \text{ iff } p \Vdash^* \varphi \text{ and } p \Vdash^* \psi. \end{array}$$

(e)(
$$\exists x \varphi$$
)
 $p \Vdash^* \exists x \varphi(x, ...)$ iff $\{r \leq p | \exists \sigma \in M^{\mathbb{P}}(r \Vdash^* \varphi(\sigma, ...))\}$ is dense below
p.

```
\mathbf{Our} \, \operatorname{\mathbf{goal}}\nolimits : p \Vdash_{\mathcal{M}, \mathbb{P}}^{*} \varphi \Leftrightarrow p \Vdash_{\mathcal{M}, \mathbb{P}} \varphi
```

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Our goal:
$$p \Vdash_{M,\mathbb{P}}^* \varphi \Leftrightarrow p \Vdash_{M,\mathbb{P}} \varphi$$

Lemma

$$(p \Vdash \varphi) \land (q \le p) \to q \Vdash \varphi p \Vdash \varphi \text{ and } p \Vdash \psi \to p \Vdash \varphi \land \psi$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Our goal:
$$p \Vdash_{M,\mathbb{P}}^* \varphi \Leftrightarrow p \Vdash_{M,\mathbb{P}} \varphi$$

Lemma

 $(p \Vdash \varphi) \land (q \le p) \to q \Vdash \varphi$ $p \Vdash \varphi \text{ and } p \Vdash \psi \to p \Vdash \varphi \land \psi$

Lemma

TFAE:

$$\ \, \mathbf{0} \ \, \mathbf{r} \leq \mathbf{p}, \ \mathbf{r} \Vdash^* \varphi(\vec{\tau}).$$

イロト 不得 トイヨト イヨト 二日

(a)(b) By definition.

- 2

(a)(b) By definition.

$$\begin{array}{l} (1)_c \ p \Vdash^* \varphi \land \psi \\ \leftrightarrow p \Vdash^* \varphi \text{ and } p \Vdash^* \psi \end{array}$$

- 2

(a)(b) By definition.

$$\begin{array}{l} (1)_c \ p \Vdash^* \varphi \land \psi \\ \leftrightarrow p \Vdash^* \varphi \text{ and } p \Vdash^* \psi \\ \leftrightarrow \forall r \leq p, r \Vdash^* \varphi \text{ and } r \Vdash^* \psi \text{ (By induction)} \end{array}$$

- 2

<ロト <問ト < 国ト < 国ト

(a)(b) By definition.

$$\begin{array}{l} (1)_c \ p \Vdash^* \varphi \land \psi \\ \leftrightarrow \ p \Vdash^* \varphi \ \text{and} \ p \Vdash^* \psi \\ \leftrightarrow \ \forall r \leq p, r \Vdash^* \varphi \ \text{and} \ r \Vdash^* \psi \ \text{(By induction)} \\ \leftrightarrow \ \forall r \leq p, r \Vdash^* \varphi \land \psi \ \text{(3)}_c \\ \rightarrow \{q \leq p | q \Vdash^* \varphi \land \psi\} \ \text{is dense below p. (2)}_c \\ \leftrightarrow \{q \leq p | q \Vdash^* \varphi \ \text{and} \ q \Vdash^* \psi\} \ \text{is dense below p. p.} \end{array}$$

- 2

(a)(b) By definition.

$$\begin{array}{l} (1)_{c} \ p \Vdash^{*} \varphi \wedge \psi \\ \leftrightarrow p \Vdash^{*} \varphi \text{ and } p \Vdash^{*} \psi \\ \leftrightarrow \forall r \leq p, r \Vdash^{*} \varphi \text{ and } r \Vdash^{*} \psi \text{ (By induction)} \\ \leftrightarrow \forall r \leq p, r \Vdash^{*} \varphi \wedge \psi \text{ (3)}_{c} \\ \rightarrow \{q \leq p | q \Vdash^{*} \varphi \wedge \psi\} \text{ is dense below p. (2)}_{c} \\ \leftrightarrow \{q \leq p | q \Vdash^{*} \varphi \text{ and } q \Vdash^{*} \psi\} \text{ is dense below p.} \\ \rightarrow \{q \leq p | q \Vdash^{*} \varphi\} \text{ is dense below p.} \\ \rightarrow \{q \leq p | q \Vdash^{*} \psi\} \text{ is dense below p.} \\ \rightarrow \{q \leq p | q \Vdash^{*} \psi\} \text{ is dense below p.} \\ \downarrow p \Vdash^{*} \psi \text{ and } p \Vdash^{*} \psi \end{array}$$

$$\begin{array}{l} \leftrightarrow p \Vdash^* \varphi \text{ and } p \Vdash^* \psi \\ \leftrightarrow (1)_c \end{array}$$

- 2

<ロト <問ト < 国ト < 国ト

$$(1)_d \ p \Vdash^* \neg \varphi$$

 $\leftrightarrow \{q \leq p | q \not\Vdash^* \varphi\}$ is dense below p

$$egin{array}{lll} (1)_d \ p \Vdash^* \neg arphi \\ \leftrightarrow \{q \leq p | q \not\Vdash^* arphi \} \ ext{is dense below } p. \ \leftrightarrow \ ext{no } q \leq p, \ q \Vdash^* arphi \end{array}$$

$$\begin{array}{l} (1)_{d} \ p \Vdash^{*} \neg \varphi \\ \leftrightarrow \{q \leq p | q \not\Vdash^{*} \varphi\} \text{ is dense below p.} \\ \leftrightarrow \text{ no } q \leq p, \ q \Vdash^{*} \varphi \\ \rightarrow \forall r \leq p, \text{ no } q \leq r, \ q \Vdash^{*} \varphi \\ \rightarrow (3)_{d} \\ \rightarrow (2)_{d} \{q \leq p | q \Vdash^{*} \neg \varphi\} \text{ is dense below p.} \end{array}$$

・ロト・西ト・モン・ビー シック

$$\begin{array}{l} (1)_d \ p \Vdash^* \neg \varphi \\ \leftrightarrow \{q \leq p | q \Vdash^* \varphi\} \text{ is dense below p.} \\ \leftrightarrow \text{ no } q \leq p, \ q \Vdash^* \varphi \\ \rightarrow \forall r \leq p, \text{ no } q \leq r, \ q \Vdash^* \varphi \\ \rightarrow (3)_d \\ \rightarrow (2)_d \{q \leq p | q \Vdash^* \neg \varphi\} \text{ is dense below p} \\ \leftrightarrow \{q \leq p | \text{ no } r \leq q, \ r \Vdash^* \varphi\} \text{ is dense below p} \\ \leftrightarrow (1_d) \end{array}$$

・ロト・西ト・ヨト・ヨー うへぐ

$\begin{array}{l} (1)_e \ p \Vdash^* \exists x \varphi \\ \leftrightarrow \{ r \leq p | \exists \sigma \in M^{\mathbb{P}}(r \Vdash^* \varphi) \} \text{ is dense below } p \end{array}$

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ― 圖 … のへで

$$\begin{array}{l} (1)_e \ p \Vdash^* \exists x\varphi \\ \leftrightarrow \{r \leq p | \exists \sigma \in M^{\mathbb{P}}(r \Vdash^* \varphi)\} \text{ is dense below } p \\ \leftrightarrow \forall q \leq p, \ \{r \leq q | \exists \sigma \in M^{\mathbb{P}}(r \Vdash^* \varphi)\} \text{ is dense below } q \\ \leftrightarrow (3)_e \\ \rightarrow (2)_e \ \{r \leq p | r \Vdash^* \exists x\varphi\} \text{ is dense below } p \end{array}$$

$$\begin{array}{l} (1)_{e} \ p \Vdash^{*} \exists x \varphi \\ \leftrightarrow \{ r \leq p | \exists \sigma \in M^{\mathbb{P}}(r \Vdash^{*} \varphi) \} \text{ is dense below } p \\ \leftrightarrow \forall q \leq p, \ \{ r \leq q | \exists \sigma \in M^{\mathbb{P}}(r \Vdash^{*} \varphi) \} \text{ is dense below } q \\ \leftrightarrow (3)_{e} \\ \rightarrow (2)_{e} \ \{ r \leq p | r \Vdash^{*} \exists x \varphi \} \text{ is dense below } p \\ \leftrightarrow \{ r \leq p | \{ q \leq r | \exists \sigma \in M^{\mathbb{P}}(q \Vdash^{*} \varphi) \} \text{ is dense below } r \} \text{ is dense below } p \\ \rightarrow (1)_{e} \end{array}$$

Theorem

(1)
$$p \in G$$
, $p \Vdash^* \varphi(\tau_1, \ldots, \tau_n)$
 $\Rightarrow M[G] \models \varphi(\tau_{1_G}, \ldots, \tau_{n_G})$
(2) $M[G] \models \varphi(\tau_{1_G}, \ldots, \tau_{n_G})$
 $\Rightarrow \exists p \in G$, $p \Vdash^* \varphi(\tau_1, \ldots, \tau_n)$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Theorem

(1)
$$p \in G$$
, $p \Vdash^* \varphi(\tau_1, \ldots, \tau_n)$
 $\Rightarrow M[G] \models \varphi(\tau_{1_G}, \ldots, \tau_{n_G})$
(2) $M[G] \models \varphi(\tau_{1_G}, \ldots, \tau_{n_G})$
 $\Rightarrow \exists p \in G$, $p \Vdash^* \varphi(\tau_1, \ldots, \tau_n)$

Corollary

(1)
$$p \Vdash \varphi \Leftrightarrow p \Vdash^* \varphi$$

(2) $M[G] \models \varphi(\tau_{1_G}, \dots, \tau_{n_G}) \Leftrightarrow \exists p \in G(p \Vdash \varphi(\tau_1, \dots, \tau_n))$

Proof of Corollary: (1) (\Leftarrow) By the Theorem (\Rightarrow) $p \Vdash \varphi$, we need to prove that $\{r \leq p | r \Vdash^* \varphi\}$ is dense below p. If not, there is a *G*, s.t. $G \cap \{r \leq p | r \Vdash^* \varphi\} = 0$. Then $M[G] \not\models \varphi$, Contradiction! (1) \Rightarrow (2)

Part of the proof: (1) $(\tau_1 = \tau_2)$ We assume $p \Vdash^* \tau_1 = \tau_2$ and $p \in G$. We must show $\tau_{1_G} = \tau_{2_G}$.

イロト 不得下 イヨト イヨト 二日

Part of the proof: (1) $(\tau_1 = \tau_2)$ We assume $p \Vdash^* \tau_1 = \tau_2$ and $p \in G$. We must show $\tau_{1_G} = \tau_{2_G}$.

We shall show $\tau_{1_G} \subset \tau_{2_G}$ Every element of τ_{1_G} is of the form π_{1_G} , where $< \pi_1, s_1 > \in \tau_1$ for some $s_1 \in G$.

イロト イポト イヨト イヨト 二日

Part of the proof: (1) $(\tau_1 = \tau_2)$ We assume $p \Vdash^* \tau_1 = \tau_2$ and $p \in G$. We must show $\tau_{1_G} = \tau_{2_G}$.

We shall show $\tau_{1_G} \subset \tau_{2_G}$ Every element of τ_{1_G} is of the form π_{1_G} , where $< \pi_1, s_1 > \in \tau_1$ for some $s_1 \in G$.

Fix $r \in G$ with $r \leq p$ and $r \leq s_1$. Then $r \Vdash^* \tau_1 = \tau_2$, so there is a $q \in G$ such that $q \leq r$ and s.t. $q \leq s_1$ which implies $\exists < \pi_2, s_2 > \in \tau_2(q \leq s_2 \land q \Vdash^* \pi_1 = \pi_2).(*)$
Forcing

Part of the proof: (1) $(\tau_1 = \tau_2)$ We assume $p \Vdash^* \tau_1 = \tau_2$ and $p \in G$. We must show $\tau_{1_G} = \tau_{2_G}$.

We shall show $\tau_{1_G} \subset \tau_{2_G}$ Every element of τ_{1_G} is of the form π_{1_G} , where $< \pi_1, s_1 > \in \tau_1$ for some $s_1 \in G$.

Fix $r \in G$ with $r \leq p$ and $r \leq s_1$. Then $r \Vdash^* \tau_1 = \tau_2$, so there is a $q \in G$ such that $q \leq r$ and s.t. $q \leq s_1$ which implies $\exists < \pi_2, s_2 > \in \tau_2(q \leq s_2 \land q \Vdash^* \pi_1 = \pi_2).(*)$

So fix $\langle \pi_2, s_2 \rangle$ as in (*), then $s_2 \in G$, so $\pi_{2_G} \in \tau_{2_G}$. Also, by (1) for $\pi_1 = \pi_2$ (IH), $q \Vdash^* \pi_1 = \pi_2$ implies $\pi_{1_G} = \pi_{2_G}$, so $\pi_{1_G} \in \tau_{2_G}$.

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 ○ のへの

The End

3

<ロト < 四ト < 三ト < 三ト