An introduction to forcing

Wang Yunsong

School of Mathematical Science

1600010615@pku.edu.cn

September 17, 2019

o) - = DA
Wang Yunsong (SMS) Forcing

B
Overview

@ Generic extensions

@ Forcing

Wang Yunsong (SMS)

Forcing

Our goal: Con(ZFC) — Con(ZFC+ —CH)

=] & = E A
Wang Yunsong (SMS) Forcing

Theorem(Godel)

THepeTEp

=] & = E A
Wang Yunsong (SMS) Forcing

Our goal: Con(ZFC) — Con(ZFC+ —CH)

Our goal: Con(ZFC) — Con(ZFC+ —CH)

Theorem(Godel)
T TEp J

So if there is a M = ZFC, we want to find a new model N = ZFC+ —-CH

We will construct a model M[G], s.t G¢ M, M C M[G]

Wang Yunsong (SMS) Forcing September 17, 2019 3/25

— M transitive set, x€e MAyex=ye M

Wang Yunsong (SMS)

Forcing

Generic extensions

— M transitive set, x€e MAyex=ye M

— A p.o. of Mis a triple, <P, <, 1 > s.t. < partially orders P and 1 is a
largest element of P (i.e., Vp € P(p < 1)), and P € M.

Wang Yunsong (SMS) Forcing September 17, 2019 4/25

Generic extensions

— M transitive set, x€e MAyex=ye M

— A p.o. of Mis a triple, <P, <, 1 > s.t. < partially orders P and 1 is a
largest element of P (i.e., Vp € P(p < 1)), and P € M.

— Let G C P, we call Gis a filter on P:
e G#0
e VpgeP((pe GAge G) —» Ire G(r< pAr<q))
o Vp,geP((p<gApeG) - qgeG)

Wang Yunsong (SMS) Forcing September 17, 2019 4/25

- DCP, Disdensein P, if Vpe P,3g € D(q < p).

Wang Yunsong (SMS)

Forcing

- DCUP, Disdense in P, if YpeP,3q € D(q < p).

— G is IP — generic over M iff G is a filter on IP and for all dense
DCP,De M— GND#0.

o =3 = E DAl
Wang Yunsong (SMS) Forcing

Generic extensions

- DCUP, Disdense in P, if YpeP,3q € D(q < p).

— G is IP — generic over M iff G is a filter on IP and for all dense
DCP,De M— GND#0.

Lemma

if M is countable and p € P, then there is a G which is P — generic over M
such that p € G.

Wang Yunsong (SMS) Forcing September 17, 2019 5/25

Generic extensions

- DCUP, Disdense in P, if YpeP,3q € D(q < p).

— G is IP — generic over M iff G is a filter on IP and for all dense
DCP,De M— GND#0.
Lemma

if M is countable and p € P, then there is a G which is P — generic over M
such that p € G.

Proof: M is countable, so let D,(n € w) enumerate all dense subsets of P
which are in M.

Then choose a sequence gp(n € w) so that p=¢go > g1 > ... and
Gn+1 € Dp. Let G be the filter generated by {g, : n € w}.

Wang Yunsong (SMS) Forcing September 17, 2019 5/25

Generic extensions

- DCUP, Disdense in P, if YpeP,3q € D(q < p).

— G is IP — generic over M iff G is a filter on IP and for all dense
DCP,De M— GND#0.
Lemma

if M is countable and p € P, then there is a G which is P — generic over M
such that p € G.

Proof: M is countable, so let D,(n € w) enumerate all dense subsets of P
which are in M.

Then choose a sequence gp(n € w) so that p=¢go > g1 > ... and
Gn+1 € Dp. Let G be the filter generated by {g, : n € w}.

Remark: Dense subset can be replaced by open dense subset or maximum
anti-chain.

Wang Yunsong (SMS) Forcing September 17, 2019 5/25

Lemma

If M is a transitive model of ZFC, P € M is a p.o. such that Vp € P

dg,reP(g<pAr<pAq.lr),and Gis P — generic over M, then G ¢ M.

o) - = DA
Wang Yunsong (SMS) Forcing

Generic extensions

Lemma

If M is a transitive model of ZFC, P € M is a p.o. such that Yp € P
dg,reP(g<pAr<pAq.lr),and Gis P — generic over M, then G ¢ M.

Remark: If condition fails for IP, then there is a filter G on P which
intersects all dense subsets of P, and if P € M, then G M.

Then forcing to such a P will be trivial. Thus, almost all p.o. we
considered satisfy this condition, although it is never needed in the
abstract treatment of forcing.

Wang Yunsong (SMS) Forcing September 17, 2019 6/25

Let M be a c.t.m for ZFC, with P a p.o. in M and G is P — generic
over M.

Wang Yunsong (SMS)

Forcing

Generic extensions

Let M be a c.t.m for ZFC, with P a p.o. in M and G is P — generic
over M.

We shall show how to construct another c.t.m for ZFC, called M[G],
which will satisfy M C M[G], o(M) = o(M[G]), and G € M[G].

Wang Yunsong (SMS) Forcing September 17, 2019 7/25

Generic extensions

Let M be a c.t.m for ZFC, with P a p.o. in M and G is P — generic
over M.

We shall show how to construct another c.t.m for ZFC, called M[G],
which will satisfy M C M[G], o(M) = o(M[G]), and G € M[G].

M[G] will be the least extension of M to a c.t.m for ZFC containing
G. The fact that G € M[G] will imply, by Lemma, that in most cases

M # M[G).

Wang Yunsong (SMS) Forcing September 17, 2019 7/25

Generic extensions

Let M be a c.t.m for ZFC, with P a p.o. in M and G is P — generic
over M.

We shall show how to construct another c.t.m for ZFC, called M[G],
which will satisfy M C M[G], o(M) = o(M[G]), and G € M[G].

M[G] will be the least extension of M to a c.t.m for ZFC containing
G. The fact that G € M[G] will imply, by Lemma, that in most cases

M # M[G).

Roughly, this will be the set of all sets which can be constructed from
G by applying set-theoretic processes definable in M.

Wang Yunsong (SMS) Forcing September 17, 2019 7/25

Generic extensions

Let M be a c.t.m for ZFC, with P a p.o. in M and G is P — generic
over M.

We shall show how to construct another c.t.m for ZFC, called M[G],
which will satisfy M C M[G], o(M) = o(M[G]), and G € M[G].

M[G] will be the least extension of M to a c.t.m for ZFC containing
G. The fact that G € M[G] will imply, by Lemma, that in most cases

M # M[G).

Roughly, this will be the set of all sets which can be constructed from
G by applying set-theoretic processes definable in M.

Each element of M[G] will have a name in M, which tells how it has
been constructed from G.

Wang Yunsong (SMS) Forcing September 17, 2019 7/25

Generic extensions

Let M be a c.t.m for ZFC, with P a p.o. in M and G is P — generic
over M.

We shall show how to construct another c.t.m for ZFC, called M[G],
which will satisfy M C M[G], o(M) = o(M[G]), and G € M[G].

M[G] will be the least extension of M to a c.t.m for ZFC containing
G. The fact that G € M[G] will imply, by Lemma, that in most cases

M # M[G).

Roughly, this will be the set of all sets which can be constructed from
G by applying set-theoretic processes definable in M.

Each element of M[G] will have a name in M, which tells how it has
been constructed from G.

People living within M will be able to comprehend a name, 7, for an
object in M[G], but they will not in general be able to decide the object,
T¢, that 7 names, since this will require a knowledge of G.

Wang Yunsong (SMS) Forcing September 17, 2019 7/25

Definition
7 is a P-name iff 7 is a relation and

V < o,p>€ 7[ois a P-name Ap € P].

Wang Yunsong (SMS)

Forcing

Generic extensions

Definition
7 is a P-name iff 7 is a relation and
V < o,p>€ 7[ois a P-name Ap € P].

The collection of P-name will be a proper class if P # 0.

And this definition must be understood as a definition by transfinite
recursion. Formally, one defines the characteristic function of the P-name,
H(P,), by

H(P,7) = 1iff 7 is a relation AV < o, p >€ T[H(P,0) =1 Ap e P
H(P, 7) = 0 otherwise.

Wang Yunsong (SMS) Forcing September 17, 2019 8/25

M? = {7 € M: (7 is a P-name)M}.

o) - = DA
Wang Yunsong (SMS) Forcing

Definition
VE is the class of P-names. If M is a transitive model of ZFC and P € M,
MF = V¥ 1 M. Or, by absoluteness,

Generic extensions

Definition
VE is the class of P-names. If M is a transitive model of ZFC and P € M,

MF = V¥ 1 M. Or, by absoluteness,
M? = {7 € M: (7 is a P-name)M}.

When forcing over M, use is made only of the P-names in MF, which
we may think of as being defined within M.

When M = ZFC, 7 is a P-name < (7 is a P-name)M.

Wang Yunsong (SMS) Forcing September 17, 2019 9/25

Definition

val(t, G) = {val(o, G) : Ip € G(< o,p >€ 7)}. We also write ¢ for

val(r, G). And 0 is also a P-name, we define that 0g = 0 for any G.

o) - = DA
Wang Yunsong (SMS) Forcing

Generic extensions

Definition

val(t, G) = {val(o, G) : Ip € G(< o,p >€ 7)}. We also write ¢ for
val(r, G). And 0 is also a P-name, we define that 0g = 0 for any G.

Definition
If M is a transitive model of ZFC, P € M, and G C P, then
M[G] = {r¢: T € MF}.

[} = =
Wang Yunsong (SMS) Forcing

Generic extensions

Definition
val(t, G) = {val(o, G) : Ip € G(< o,p >€ 7)}. We also write ¢ for
val(t, G). And 0 is also a P-name, we define that 0 = 0 for any G.

Definition
If M is a transitive model of ZFC, P € M, and G C P, then
MGl ={rg:T € MP}.

Lemma
If Nis a transitive model of ZFC with M C N and G € N, then M[G] C N.

Thus, once we check that M[G] is indeed a transitive extension of M
containing G and satisfying ZFC, it will be the least such extension.

Wang Yunsong (SMS) Forcing September 17, 2019 10/25

Generic extensions

First, we want to check that M C M|[G]:
Check Name

—X, x € M (check name)
y(:{<.\)l/7]]-IP’> |y€X}
eg 0=0, {0} ={<0,1p >}

=] & = E A
Wang Yunsong (SMS) Forcing

Generic extensions

First, we want to check that M C M|[G]:

Check Name
—X, x € M (check name)

x={<y1lp>|yex}
eg. 0=0 {0} ={<0,1p >}

Lemma

If M is a transitive model of ZFC, P is a p.o. in M, and G is a non-empty
filter on P, then:

(a)¥x € M[x € MF A val(x, G) = .

(b)M C M[G].

[} = =
Wang Yunsong (SMS) Forcing

Lemma
G¢ MAGe MG

Wang Yunsong (SMS)

Forcing

Generic extensions

Lemma
G¢ MAGe MG J

Proof:
(G¢ M) If not, P\ G C P. For P, we know that Vp € P3q,r€ P,qLr. So

P\ G is dense. Contradiction!

(G € M[G]) we need to find a name that represents it.
T={<pp>|peP}, and c=G.

Wang Yunsong (SMS) Forcing September 17, 2019 12/25

Generic extensions

Lemma
G¢ MAGe MG J

Proof:

(G¢ M) If not, P\ G C P. For P, we know that Vp € P3q,r€ P,qLr. So
P\ G is dense. Contradiction!

(G € M[G]) we need to find a name that represents it.
T={<pp>|peP}, and c=G.

Remark: M[G] satisfy Axiom of Extension, Union, Pairing, Foundation.

Wang Yunsong (SMS) Forcing September 17, 2019 12/25

Lemma
M[G] is transitive.

Wang Yunsong (SMS)

Forcing

Lemma
M[G] is transitive.
Proof:

76 € M[G], T € MF

76 ={0g| <o,p>eT,pe G}
Soog € M[G]

=] & = E A
Wang Yunsong (SMS) Forcing

Lemma
M[G] is transitive.
Proof:

76 € M[G], T € MF

76 ={0g| <o,p>eT,pe G}
Soog € M[G]

Lemma

OrdN M = Ord N M[G].

=] & = E A
Wang Yunsong (SMS) Forcing

Generic extensions

Lemma
M[G] is transitive. J

Proof: 76 € M[G],7 € M*
76 ={0g| <o,p>eT,pe G}
Soog € M[G]

Lemma
OrdN M = Ord N M[G]. J

Proof: M C M][G], and they are transitive, so Ord N M C Ord N M[G].
For any set A, we define rank(A) = min{a|A € V,}.
rk(A) = sup{rk(B) + 1|B € A}, and Va, rk(a) = cv.
OrdN M = {rk(A)|A € M}, Ordn M[G] = {rk(A)|A € M[G]}.
We want to prove that V', rk(7g) < rk(7) € OrdN M, then we
will know YA € M[G], rk(A) € OrdN M.
U

Wang Yunsong (SMS) Forcing September 17, 2019 13/25

Now we should know that for a given ¢ if M[G] = .

Wang Yunsong (SMS)

Forcing

Now we should know that for a given ¢ if M[G] = ¢.
First, we defind IF:

plFmp @ iff for any (M,P) — generic G, if p € G, then M[G] = ¢.

That is a semantic definition, later we need to find a syntax
definition. And then we prove that they are equivalent.

Wang Yunsong (SMS) Forcing September 17, 2019

14 /25

Let us consider first a specific example.

@ Mis ac.t.m for ZFC.

@ PP is the set of finite partial functions from w to 2 ordered by reverse
inclusion.

@ lp is the empty function.

And < P, <, 1 >€ M, since its definition is absolute for transitive
models of ZFC.

Wang Yunsong (SMS) Forcing September 17, 2019 15/25

Let us consider first a specific example.

@ Mis ac.t.m for ZFC.

@ P is the set of finite partial functions from w to 2 ordered by reverse
inclusion.

@ lp is the empty function.

And < P, <, 1 >€ M, since its definition is absolute for transitive
models of ZFC.

If G is a filter on P, fc = UG is a function and dom(fg) = w.

Wang Yunsong (SMS) Forcing September 17, 2019 15/25

Let us consider first a specific example.

@ Mis ac.t.m for ZFC.

@ P is the set of finite partial functions from w to 2 ordered by reverse
inclusion.

@ 1p is the empty function.

And < P, <, 1 >€ M, since its definition is absolute for transitive
models of ZFC.

If G is a filter on P, fc = UG is a function and dom(fg) = w.

G € M[G] and fg = UG, fg € M[G] will follow immediately from the
absoluteness of U for transitive models of ZF.

Wang Yunsong (SMS) Forcing September 17, 2019 15/25

Let us consider first a specific example.

@ Mis ac.t.m for ZFC.

@ P is the set of finite partial functions from w to 2 ordered by reverse
inclusion.

@ 1p is the empty function.

And < P, <, 1 >€ M, since its definition is absolute for transitive
models of ZFC.

If G is a filter on P, fc = UG is a function and dom(fg) = w.
G € M[G] and fg = UG, fg € M[G] will follow immediately from the
absoluteness of U for transitive models of ZF.
However, we may check fg € M[G] directly, Let
o ={<(< n,vm >),p>: pe€PAnedom(p)Ap(n) =m}
e ={< n,m>:3pe G(ne dom(p) A p(n)=m)} = fgc.
Thus, fg € M[G].

Wang Yunsong (SMS) Forcing September 17, 2019 15/25

If Gis P — generic over M, then G ¢ M.
means that fg # g. So fg ¢ M.

Forany g:w —2,ifgeM, E={p:p¢ g} isdense. So GNE#0

o =3 = E DAl
Wang Yunsong (SMS) Forcing

If Gis P — generic over M, then G ¢ M.
Forany g:w —2,ifgeM, E={p:p¢ g} isdense. So GNE#0
means that fg # g. So fg ¢ M.

So in this example, we use forcing to find a new real number which is
not in M.

Wang Yunsong (SMS) Forcing September 17, 2019 16 /25

If Gis P — generic over M, then G ¢ M.
Forany g:w —2,ifgeM, E={p:p¢ g} isdense. So GNE#0
means that fg # g. So fg ¢ M.

So in this example, we use forcing to find a new real number which is
not in M.

Also, we know that {< 0,0 >} I~ fc(0) = 0 and
{<0,1>}1IF15(0) =1,

Wang Yunsong (SMS) Forcing September 17, 2019 16 /25

Now we define [F*.
p H_X/LP 80(7—137-2) -.-;Tn)v 7—177—23 .,"Tn I in I\JP, SO(X]-, ""Xn) is
a formula.

Wang Yunsong (SMS)

Forcing

Now we define [F*.
plEye O(T1, 72y ooy Tn), T1, T2, ..., Ty are names in M, o(xq, ..., x,) is
a formula.

(Induction of the complexity of names and formula)

(a) (7'1:7'2), T1={< 1,851 > |}, T2={< T, Sp > ‘}

(a) for all < 71,81 >€ 7,
{g<plg<si > I <M, >Em(g<spAql-* 71 =m)} is dense below
p, and

(B) for all < ma, 50 >€ 7,
{g<plg< s, > I< 7,5 > 11(g < sy Agl-* w1 = mp)} is dense below
p.

A is dense below p means that Vg < pdre A(r < g).

Wang Yunsong (SMS) Forcing September 17, 2019 17/25

(b)(m1 € ™), 2 ={< M2, 52 > |...}

{g<pl3<mys>emn(g< s AqlF* 7 =m1)} is dense below p.

o) - = DA
Wang Yunsong (SMS) Forcing

(b)(m1 € ™), 2 ={< M2, 52 > |...}

(e ny)

{g<pl3<mys>emn(g< s AqlF* 7 =m1)} is dense below p.

pIF* o A iff plIF* o and p IF* .

o) - = DA
Wang Yunsong (SMS) Forcing

(b)(r1 €), 2 ={< M2, 2 > |..}

{g<pl3<mys>emn(g< s AqlF* 7 =m1)} is dense below p.

() A2p)
pIF* o A iff plIF* o and p IF* .

(d)(—%)
plF* = iff {g < p|g " ¢} is dense below p.

Wang Yunsong (SMS) Forcing September 17, 2019

18/25

(b)(T1 € ™), m ={< M2, > |...}
{g<pl3<mys>emn(g< s AqlF* 7 =m1)} is dense below p.

() A2p)
pIF* o A iff plIF* o and p IF* .

(d)(—%)
plF* = iff {g < p|g " ¢} is dense below p.

(e)(3x»)

pIF* Ixp(x,...) iff {r< p|3o € ME(riF* ¢(o,...))} is dense below
p.

Wang Yunsong (SMS) Forcing September 17, 2019 18/25

Our goal:p I, ¢ < plhup ¢

Wang Yunsong (SMS)

Forcing

Our goal:p IFyp e < plEmp ¢
Lemma

(PFo)A(g<p)—=qlFo

plFyand plky = plEp Ay

=] & = E A
Wang Yunsong (SMS) Forcing

Our goal:p IFyp e < plEmp ¢
Lemma

(plE)A(g<p)—=qlFe

plFyand plkyY — plE@ A

Lemma

TFAE:

0 pl- (7).

Q {g<plgl-* (7

7

)} is dense below p.
Q@ r<p, rit* (7).

o) - = DA
Wang Yunsong (SMS) Forcing

Forcing
r()of:
(a)(b) By definition.

Wang Yunsong (SMS)

Forcing

Proof:
(a)(b) By definition.

(Ve plH* oy

< plE* ¢ and plF* 4

=] & = E A
Wang Yunsong (SMS) Forcing

Proof:
(a)(b) By definition.
(De plEr N

< plE* ¢ and plF* 4
~ Vr< p,rlF* ¢ and rl-* ¢ (By induction)

=] F = = DA

Wang Yunsong (SMS) Forcing

Proof:
(a)(b) By definition.

(De plEr N

< plE* ¢ and plF* 4

~ Vr< p,rlF* ¢ and rl-* ¢ (By induction)

> Vr<priF* oA (3)c

— {g < plgIF* ¢ A9} is dense below p. (2)
< {g<plglF* ¢ and gI-* ¢} is dense below p.

Wang Yunsong (SMS) Forcing September 17, 2019 20/25

Proof:
(a)(b) By definition.

(De plEr N

< plE* ¢ and plF* 4

~ Vr< p,rlF* ¢ and rl-* ¢ (By induction)

> Vr<priF* oA (3)c

— {g < plgIF* ¢ A9} is dense below p. (2)

< {g<plglF* ¢ and gI-* ¢} is dense below p.

— {q < plgIF* ¢} is dense below p and {g < p|gIF* ¢} is dense
below p.

< plE* ¢ and plE* 4

“ (1)e

Wang Yunsong (SMS) Forcing September 17, 2019 20/25

(1)g pIF* =g

+ {q < plglff* ¢} is dense below p.

=] & = E A
Wang Yunsong (SMS) Forcing

(1)g pIF* =g

< {g < plglff* ¢} is dense below p.
<+nog<p qlF-o

=] & = E A
Wang Yunsong (SMS) Forcing

(Da pIE* =

<~ {q < plglff* v} is dense below p.
+<nog<p gl

—Vr<p,nog<r ql-¢p

= (3)a

— (2)g {g < plgIF* =} is dense below p

o) - = DA
Wang Yunsong (SMS) Forcing

(1)g pIF* =g

< {g < plglff* ¢} is dense below p.
<+nog<p qlF-o
—Vr<p,nog<r,qlt-top

— (3)d

— (2)g {g < plgIF* —¢} is dense below p
~{g<p|nor<agq rlF* ¢} is dense below p
<~ (]-d)

Wang Yunsong (SMS) Forcing September 17, 2019 21/25

(Le pIF* 3xp

< {r< p|3c € MP(riF*)} is dense below p

=] & = E A
Wang Yunsong (SMS) Forcing

(L)e pIF* Ixp

< {r< p|3c € MP(riF*)} is dense below p

Vg < p {r<qg3c € ME(ri-* @)} is dense below
< (3)e

— (2)e {r < p|rF* Ixp} is dense below p

Wang Yunsong (SMS) Forcing September 17, 2019 22/25

(L)e pIF* Ixp

< {r< p|3c € MP(riF*)} is dense below p

Vg < p {r<qg3c € ME(ri-* @)} is dense below

< (3)e

— (2)e {r < p|rF* Ixp} is dense below p

< {r< pl{qg < 3o € MP(qIF* ©)}is dense below r}is dense below p
— (1)e

Wang Yunsong (SMS) Forcing September 17, 2019 22/25

Theorem
(1) pE G, p I-* SD(Tl? s aTn)
= M[G]): 90(7—1(;7 oo aTﬂc)
(2) M[G] = 90(7-10‘ '7Tnc)

=dpe G plt* p(m,

.y Th)

=] & = E A
Wang Yunsong (SMS) Forcing

Forcing

Theorem

(1) pe G, pl-*o(r1,...,7n)
= M[G] = o(T1¢, -+, Tne)
(2) M[G]): 90(7-1@ ce 77_nc;)
=3dpe G plt* p(r,...,7n)

Corollary

(1) plkpeplFo
(2) M[G] = o(T1¢, .-, Tne) © 3p € G(p - @(T1,...,7h))

Proof of Corollary:
(1) («) By the Theorem
(=) pIF ¢, we need to prove that {r < p|rIF* ¢} is dense below p.
If not, there is a G, s.t. GN{r < p|riF* ¢} = 0. Then M[G] }~ ¢,
Contradiction!
(1) = (2)

v

Wang Yunsong (SMS) Forcing September 17, 2019 23/25

Part of the proof:
(1) (71 = 72) We assume plF* 74 = 7 and p € G. We must show
Tie = T2¢-

Wang Yunsong (SMS)

Forcing

Part of the proof:
(1) (71 = 72) We assume plF* 74 = 7 and p € G. We must show

Tig = T2¢-

We shall show 71, C 7
Every element of 71 is of the form 7., where < 71,51 >€ 71 for

some s; € G.

Wang Yunsong (SMS) Forcing September 17, 2019 24 /25

Part of the proof:
(1) (71 = 72) We assume plF* 74 = 7 and p € G. We must show

Tig = T2¢-

We shall show 71, C 7
Every element of 71 is of the form 7., where < 71,51 >€ 71 for

some s; € G.

Fix re Gwith r< pand r<s;. Then rlF* 71 = 7, so there is a
g € G such that g < rand s.t. g < s; which implies
1< mp, 5 >€ 7'2(q <sAglH T = 7T2).(*)

Wang Yunsong (SMS) Forcing September 17, 2019 24 /25

Part of the proof:
(1) (71 = 72) We assume plF* 74 = 7 and p € G. We must show

Tig = T2¢-

We shall show 71, C 7
Every element of 71 is of the form 7y, where < 71,51 >€ 71 for
some s; € G.

Fix re Gwith r<pand r<s;. Then rlt* 71 = 7, so there is a
g € G such that g < rand s.t. g < s; which implies
1< mp, 5 >€ T2(q <sAglH T = 7T2).(*)

So fix < mp,5 > asin (*), then s, € G, so mp, € To,.

Also, by (1) for my = mp (IH), g IF* w1 = 72 implies w1, = w2, SO
Mg € T2

Wang Yunsong (SMS) Forcing September 17, 2019 24 /25

The End

insong (SMS)

	Generic extensions
	Forcing

