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Background and Motivations

Sabotage Game and Sabotage Modal Logic

This work is inspired by the work on Sabotage Game (SG) [10] and Sabotage
Modal Logic (SML) [5].

A sabotage game is played on a graph.

Players: Traveler vs. Demon.

Action: In each round, Traveler moves along a link to arrive at a goal
node, while Demon deletes one link to prevent Traveler.

Winning Condition: Traveler wins iff he arrives at some goal node.
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Background and Motivations
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Background and Motivations

Sabotage Modal Logic

Definition (Language LS)

Let P be a countable set of propositional atoms. Formulas of LS are defined
as follows:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | ♦ϕ | �ϕ

where p ∈ P.

Definition (Semantics)

Let 〈W ,R,V 〉 be a standard relational model. The truth condition for � is as
follows:

〈W ,R,V 〉,w � �ϕ

m

there is 〈u, v〉 ∈ R such that 〈W ,R\{〈u, v〉},V 〉,w � ϕ
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Background and Motivations

The features of the link deletion:

Global

Arbitrary

Stepwise

While, there are also some other cases in every day life. Here we study the
update of the relationship in the social network. The link deletion for this case
has the following features:

Local

Definable

Uniform
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Definable Sabotage Modal Logic (Sd ML)

Definable Sabotage Modal Logic (SdML)

Language: Ld 3 ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | �ϕ | [−ϕ]ϕ
where p ∈ P and P is a countable set of propositional atoms.

Semantics: We just show the true condition for [− ]:

M,w � [−ϕ]ψ ⇐⇒M|〈w,ϕ〉,w � ψ

where

M|〈w,ϕ〉 := 〈W ,R \ ({w} × V (ϕ) ∩ R(w)),V 〉
Rw := {w ′ ∈W | 〈w ,w ′〉 ∈ R}

Intuitively,M,w � [−ϕ]ψ means that ψ is true at w after deleting all links
from w to the nodes that are ϕ.

6 / 23



Definable Sabotage Modal Logic (Sd ML)

Some logical validities:

[−ϕ](ϕ1 → ϕ2)→ ([−ϕ]ϕ1 → [−ϕ]ϕ2) (1)
[−ϕ]ψ ↔ 〈−ϕ〉ψ (2)
[−ϕ]p ↔ p (3)
[−p]♦q ↔ ♦(¬p ∧ q) (4)
[−p][−q]ϕ↔ [−q][−p]ϕ (5)

Example

Consider the general schema [−ϕ1][−ϕ2]ϕ↔ [−ϕ2][−ϕ1]ϕ for (5). Let
ϕ1 := p, ϕ2 := ♦♦p, and ϕ := ♦q. Define a modelM as follows:

wv1p v2 q

M,w � [−p][−♦♦p]♦q andM,w 6� [−♦♦p][−p]♦q.
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First-Order Translation

First-Order Translation

To translate the SML into first-order logic, we need a finite set of ordered pairs
of nodes in the translation. Intuitively, the ordered pairs are links that have
already been deleted. Can this method work here?

1. The links deleted by one [− ] operator in a formula may be infinite.

2. We should take care of the order of different [− ] operators in a formula.
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First-Order Translation

Our method: use a sequence of ordered pairs of the form 〈x , ϕ〉.

Definition (Standard Translation for SdML)

Let x be a designated variable, and O be a finite sequence
〈v0, ψ0〉; ...; 〈vi , ψi〉; ...; 〈vn, ψn〉(0 6 i 6 n), where ψ06i6n ∈ Ld and v06i6n is a
variable. The main clauses of the translation ST O

x : Ld → L1 is as follows:

ST O
x (♦ϕ) = ∃y(Rxy ∧ ¬(x ≡ v0 ∧ ST 〈x,⊥〉y (ψ0))∧∧

0≤i≤n−1

¬(x ≡ vi+1 ∧ ST 〈v0,ψ0〉;...;〈vi ,ψi〉
y (ψi+1)) ∧ ST O

y (ϕ))

ST O
x ([−ϕ1]ϕ2) = ST O;〈x,ϕ1〉

x (ϕ2)
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Bisimulation

Bisimulation

Fact
The logic SdML is not invariant under the standard bisimulation.

Consider the following two models:

w1

p
w2

p

w3q

v1 p

v2 q

Z

Z

Z

We haveM1,w1 � [−q]♦♦q andM2, v1 6� [−q]♦♦q.
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Bisimulation

We introduce a new notion of bisimulation for SdML, and call it d-bisimulation.

Formally, it extends the standard bisimulation with the following two clauses:

Zig[− ]: If 〈M1,w〉Zd 〈M2, v〉 and U is definable relative to R1(w) inM1, then
it holds that 〈M1|〈w,U〉,w〉Zd 〈M2|〈v ,Zd (U)〉, v〉.

Zag[− ]: If 〈M1,w〉Zd 〈M2, v〉 and U ′ is definable relative to R2(v) inM2, then
it holds that 〈M1|〈w,Z−1

d (U′)〉,w〉Zd 〈M2|〈v ,U′〉, v〉.

where Zd (U) = {v ′ ∈ R2(v) | 〈M1,w ′〉Zd 〈M2, v ′〉 for some w ′ ∈ U} and
Z−1

d (U ′) = {w ′ ∈ R1(w) | 〈M1,w ′〉Zd 〈M2, v ′〉 for some v ′ ∈ U ′}. We write
〈M1,w〉↔d 〈M2, v〉 if there exists a d-bisimulation Zd s.t. 〈M1,w〉Zd 〈M2, v〉.
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Bisimulation

Theorem (↔d ⊆!d )

For any pointed models 〈M1,w〉 and 〈M2, v〉, if 〈M1,w〉↔d 〈M2, v〉, then
〈M1,w〉!d 〈M2, v〉.

Theorem (!d⊆ ↔d )

For any ω-saturated 〈M1,w〉 and 〈M2, v〉, if 〈M1,w〉!d 〈M2, v〉, then
〈M1,w〉↔d 〈M2, v〉.

Theorem (Characterization of SdML by d-bisimulation Invariance)

An L1-formula is equivalent to the translation of an Ld -formula iff it is invariant
for d-bisimulation.
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Sd ML and Hybrid Logics

SdML and Hybrid Logics

The recursion axioms for Boolean cases are as usual. Namely,

[−ϕ]p ↔ p
[−ϕ]¬ψ ↔ ¬[−ϕ]ψ

[−ϕ](ψ1 ∧ ψ2)↔ [−ϕ]ψ1 ∧ [−ϕ]ψ2

But what should the principle for [−ϕ]�ψ be like?

[−ϕ]�ψ ↔?

We focus on the hybrid logic with nominals, at operator @ and down-arrow ↓,
which is denoted by H(↓).
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Sd ML and Hybrid Logics

Definition (The Hybrid Translation for SdML)

Let O be a finite sequence of pairs of variables of nominals and properties,
denoted with 〈x0, ψ0〉; ...; 〈xi , ψi〉; ...; 〈xn, ψn〉(0 ≤ i ≤ n). The translation
T O : Ld → H(↓) is recursively defined in the following way:

T O(p) = p
T O(¬ϕ) = ¬T O(ϕ)

T O(ϕ1 ∧ ϕ2) = T O(ϕ1) ∧ T O(ϕ2)

T O(♦ϕ) = ↓ x♦(¬(@xx0 ∧ T 〈x0,⊥〉(ψ0)) ∧∧
06i6n−1

¬(@xxi+1 ∧ T 〈x0,ψ0〉;...;〈xi ,ψi〉(ψi+1)) ∧ T O(ϕ))

T O([−ψ]ϕ) = ↓ xT O;〈x,ψ〉(ϕ)

Fact

H(↓) is more expressive than SdML over models.
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Sd ML and Hybrid Logics

We first show the axiom for formula [−ϕ1][−ϕ2]ψ:

[−ϕ1][−ϕ2]ψ ↔↓ x [− ↓ y(ϕ1 ∨ @x [−ϕ1]@yϕ2)]ψ

For formula [−ϕ]�ψ, we have the following equivalence:

[−ϕ]�ψ ↔↓ x� ↓ y(¬ϕ→ @x [−ϕ]@yψ)

But it is not the solution!

[−ϕ]@xp ↔ @xp
[−ϕ]@x¬ψ ↔ ¬[−ϕ]@xψ

[−ϕ]@x(ψ ∧ χ)↔ [−ϕ]@xψ ∧ [−ϕ]@xχ

[−ϕ]@x�ψ ↔↓ y@x� ↓ z(¬(ϕ ∧ @xy)→ @y [−ϕ]@zψ)

15 / 23



Sd ML and Hybrid Logics

We first show the axiom for formula [−ϕ1][−ϕ2]ψ:

[−ϕ1][−ϕ2]ψ ↔↓ x [− ↓ y(ϕ1 ∨ @x [−ϕ1]@yϕ2)]ψ

For formula [−ϕ]�ψ, we have the following equivalence:

[−ϕ]�ψ ↔↓ x� ↓ y(¬ϕ→ @x [−ϕ]@yψ)

But it is not the solution!

[−ϕ]@xp ↔ @xp
[−ϕ]@x¬ψ ↔ ¬[−ϕ]@xψ

[−ϕ]@x(ψ ∧ χ)↔ [−ϕ]@xψ ∧ [−ϕ]@xχ

[−ϕ]@x�ψ ↔↓ y@x� ↓ z(¬(ϕ ∧ @xy)→ @y [−ϕ]@zψ)

15 / 23



Sd ML and Hybrid Logics

We first show the axiom for formula [−ϕ1][−ϕ2]ψ:

[−ϕ1][−ϕ2]ψ ↔↓ x [− ↓ y(ϕ1 ∨ @x [−ϕ1]@yϕ2)]ψ

For formula [−ϕ]�ψ, we have the following equivalence:

[−ϕ]�ψ ↔↓ x� ↓ y(¬ϕ→ @x [−ϕ]@yψ)

But it is not the solution!

[−ϕ]@xp ↔ @xp
[−ϕ]@x¬ψ ↔ ¬[−ϕ]@xψ

[−ϕ]@x(ψ ∧ χ)↔ [−ϕ]@xψ ∧ [−ϕ]@xχ

[−ϕ]@x�ψ ↔↓ y@x� ↓ z(¬(ϕ ∧ @xy)→ @y [−ϕ]@zψ)

15 / 23



Undecidability

Undecidability of SdML

Theorem

The logic SdML does not have the tree model property.

(R1) p ∧ ♦p ∧ ♦¬p
(R2) �(p → ♦p ∧ ♦¬p)
(R3) [−¬p]��p
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Undecidability

Theorem

The logic SdML does not have the finite model property.

(F1) s ∧ p ∧�¬s ∧ ♦p ∧ ♦¬p ∧�(¬p → �⊥)
(F2) �(p → ♦s ∧ ♦¬s ∧�p)
(F3) �(p → �(s → �¬s ∧ ♦¬p))
(F4) [−¬p]��(s → ¬♦¬p)
(F5) �(p → �(¬s → ♦s ∧ ♦¬s ∧�p))
(F6) �(p → �(¬s → �(s → �¬s ∧ ♦¬p)))
(F7) [−¬p]��(¬s → �(s → ¬♦¬p))

(Spy) �(p → �(¬s → [−¬s]�♦(p ∧�s)))
(Irr) �(p → [−s]�♦s)

(No-3cyc) ¬♦(p ∧ [−s]♦[−s]♦♦(¬s ∧�¬s))
(Trans) �(p → [−s]��(¬s → [−¬s]�♦(�¬s ∧ ♦�s)))
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Undecidability

ws,p

v0 v1 v2

w0

p
w1

p
w2

p
w3

p
· · ·
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Undecidability

Theorem

The satisfiability problem for SdML is undecidable.

(M1) s ∧ p ∧�s¬s ∧ ♦sp ∧ ♦s¬p ∧�s(¬p → �s⊥)
(M2) �s(p → ♦s> ∧�s(s ∧ ♦s¬p))
(M3) [−¬p]�s�s(s ∧ ¬♦s¬p)
(M4) �s(p → ♦†> ∧�†(¬s ∧ p ∧ ♦s> ∧�s(s ∧ ♦s¬p))) † ∈ {u, r}
(M5) [−¬p]�s�†�s¬♦s¬p † ∈ {u, r}
(M6) �s(p → �†(♦u> ∧ ♦r> ∧�u(¬s ∧ p) ∧�r (¬s ∧ p))) † ∈ {u, r}
(M7) �s(p → [−s]�†(♦ss ∧ ¬♦†¬♦ss)) † ∈ {u, r}
(Spy) �s(p → �†[−¬s]�s♦s(p ∧�u⊥ ∧�r⊥)) † ∈ {u, r}

(Func) �s(p → [−s]�†[−¬s]♦s♦s(p ∧ ¬♦ss ∧ ♦†>∧
�†(�u⊥ ∧�r⊥)) † ∈ {u, r}
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Undecidability

(No-UR) �s(p → [−s]�u�r♦ss ∧ [−s]�r�u♦ss)
(No-URU) �s(p → [−s]�u�r�u♦ss)

(Conv) �s(p → [−s]♦u[−s]♦r [−¬s]♦s♦s(p ∧ ¬♦ss∧
�r (♦u> ∧ ♦r>) ∧ ♦u¬♦ss ∧ ♦r♦u(�u⊥ ∧�r⊥)))

(Unique) �s(p →
∨

1≤i≤n

ti ∧
∧

1≤i<j≤n

(ti → ¬tj))

(Vert) �s(p →
∧

1≤i≤n

(ti → ♦u

∨
1≤j≤n, u(Ti )=d(Tj )

tj))

(Horiz) �s(p →
∧

1≤i≤n

(ti → ♦r

∨
1≤j≤n, r(Ti )=l(Tj )

tj))
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Undecidability

What is the source of the high complexity of SdML?

The features of our link deletion:

Uniform (SML[5] (undecidable))

Definable (dynamic-epistemic logics of link deletion [7] (decidable))

Local

If we define [− ] in a global way, i.e.,

〈W ,R,V 〉,w � [−ϕ]ψ iff 〈W ,R \ {〈s, t〉 ∈ R | M, t � ϕ},V 〉,w � ψ

We can easily show the reduction axiom for �, and it is

[−ϕ]�ψ ↔ �(¬ϕ→ [−ϕ]ψ).
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Undecidability

Open Problem: Does making update operations local (world-relative)
generate undecidability in general for decidable dynamic-epistemic logics?
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Undecidability

Thanks for Your Attention!
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