
Introduction Finite automata and MSO Model Checking for LTL

Büchi Automata and its application to Logic

Yiting Wang

Department of Philosophy, Peking University

2019.11.12

Introduction Finite automata and MSO Model Checking for LTL

1 Introduction

2 Finite automata and MSO

3 Model Checking for LTL

Introduction Finite automata and MSO Model Checking for LTL

Outline

1 Introduction

2 Finite automata and MSO

3 Model Checking for LTL

Introduction Finite automata and MSO Model Checking for LTL

Background

FA

MSO RE

[Huffman, 1954], [Mealy, 1955] and [Moore, 1956] used deterministic
finite automata for representing sequential circuits.

Introduction Finite automata and MSO Model Checking for LTL

Background

FA

MSO RE

[Kleene, 1956] used regular expressions and show their equivalence to
finite automata.

Introduction Finite automata and MSO Model Checking for LTL

Background

FA

MSO RE

[Büchi, 1960&1962] showed that formulae in MSO[S] and finite state
automata have the same expressive power.

Introduction Finite automata and MSO Model Checking for LTL

Background

FA

MSO RE

[Vardi,Wolper, 1986&1994] showed the connection of Büchi automata
with linear temporal logic.

Introduction Finite automata and MSO Model Checking for LTL

Preliminaries

Let Σ be a nonempty alphabet.

A finite word w of length m ∈ ω over Σ is a mapping from
{0, . . . ,m− 1} to Σ. We often represent w as w(0)w(1) . . . w(m− 1).
With Σ∗ we denote the set of finite words over Σ.

An infinite word w over Σ is a mapping from ω to Σ. We often represent
w as w(0)w(1)w(2) . . .
With Σω we denote the set of infinite words over Σ.

Introduction Finite automata and MSO Model Checking for LTL

Cont.

A path π is maximal if π is infinite, or π is a finite path of length n and
(π(n− 1), u) /∈ E, for all u ∈ V .

A vertex u ∈ V is reachable from v ∈ V if there is a path v0v1 . . . vn with
v = v0 and u = vn.

If n ≥ 1 then we say that u is nontrivially reachable from v.

R(v) denotes the set of vertices that are reachable from v.

Let f and g are total functions from N to R+, then f(n) = O(g(n)) if
there is n0 ∈ N+ and c ∈ R+ s.t. when n ≥ n0, f(n) ≤ cg(n) always
holds.

Introduction Finite automata and MSO Model Checking for LTL

Outline

1 Introduction

2 Finite automata and MSO

3 Model Checking for LTL

Introduction Finite automata and MSO Model Checking for LTL

Deterministic Finite Automata

A deterministic finite automaton (DFA) A is a tuple A = (Q,Σ, δ, q0, F)
where

Q is a finite set of states,

Σ is an finite alphabet,

δ : Q× Σ→ Q is a transition function,

q0 ∈ Q is a initial states, and

F ⊆ Q is a set of accept states.

A DFA A is called total if |δ(q, a)| = 1 for all q ∈ Q and a ∈ Σ.
The size of A, denoted |A|, is the number of states and transitions in A,
i.e. |A| = |Q|+ Σ

q∈Q
Σ
a∈Σ
|δ(q, a)|

Introduction Finite automata and MSO Model Checking for LTL

Non-deterministic Finite Automata

A nondeterministic finite automaton (NFA)A is a tupleA = (Q,Σ, δ, Q0, F)
where

Q is a finite set of states,

Σ is an finite alphabet,

δ : Q× Σ→ 2Q is a transition function,

Q0 ⊆ Q is a set of initial states, and

F ⊆ Q is a set of accept states.

The transition function δ can be identified with the relation→⊆ Q×Σ×Q
given by q

a→ q′ iff q′ ∈ δ(q, a).

δ∗(q, ε) = {q}, δ∗(q, a) = δ(q, a), and

δ∗(q, a1a2 . . . an) =
⋃

q′∈δ(q,a1)

δ∗(q′, a2 . . . an)

Introduction Finite automata and MSO Model Checking for LTL

Run and Language

Let A = (Q,Σ, δ, Q0, F) be an NFA and w = a1 . . . an ∈ Σ∗ a finite
word. A run for w in A is a finite sequence of states q0q1 . . . qn such that

q0 ∈ Q0 and qi
ai+1→ qi+1 for all 0 ≤ i < n.

Run q0q1 . . . qn is called accepting if qn ∈ F .

A finite word w ∈ Σ∗ is called accepted by A if there exists an accepting
run for w. The accepted language of A, denoted L(A), is the set of finite
words in Σ∗ accepted by A, i.e.

L(A) = {w ∈ Σ∗ | there exists an accepting run for w in A}

Introduction Finite automata and MSO Model Checking for LTL

Example for DFA and NFA

qbbstart qba

qaaqab

b

a

a

b

a
b

b

a

q0start q1 q2

a,b

a b

L((a+ b)∗ab), where Σ = {a, b}

Introduction Finite automata and MSO Model Checking for LTL

Computation History

qbb

a

��
qba

a

��
qaa

a

��
qaa

b

��
qab

q0

a

~~
a

q0

a

~~
a

q1

q0

a

~~
a

q1

q0

b

��

q1

b

��
q0 q2

Introduction Finite automata and MSO Model Checking for LTL

Determinization of NFA

For a given NFA A = (Q,Σ, δ, Q0, F) we can construct an equivlent
total DFA A′ = (Q

′ ⊆ 2Q,Σ, δ′, Q0, F
′) where

F ′ = {Q∗ ⊆ Q | Q∗ ∈ Q′ and Q ∩ F 6= ∅}

and the transition function δ : 2Q × Σ→ 2Q is defined

δ′(Q∗, a) =
⋃
q∈Q∗

δ(q, a)

Introduction Finite automata and MSO Model Checking for LTL

An example for determinization

q0start q1 q2

a,b

a b

{q0}start {q0, q1}

{q0, q2}

b

a

a

ba
b

Introduction Finite automata and MSO Model Checking for LTL

Some properties of NFA

Languages recognized by NFA are closed under union, complement and
homomorphism.

Let A1 = (Q1,Σ, δ1, Q
′
1, F1) and A2 = (Q2,Σ, δ2, Q

′
2, F2). Let A =

(Q,Σ, δ, Q0, F) where

Q = Q1∪̇Q2

Q0 = Q′
1∪̇Q′

2

F = F1∪̇F2

δ(q, a)=

{
δ1(q, a) if q ∈ Q1

δ2(q, a) if q ∈ Q2

Let h be homomorphisim between Σ and Γ. Let w′ = h(w). If A =
(Q,Γ, δ′, q0, F) recognize w, then we can construct A′ = h(A) =
(Q,Γ, δ′, q0, F), where δ′(q, h(a)) = δ(q, a). A′ is a NFA which
recognizes w′.

Complement part can be easily shown by constructing an equivalent
total DFA.

Introduction Finite automata and MSO Model Checking for LTL

Words as structures

Let W =
(
W,SW,

(
PW
a

)
a∈Σ

)
be a structure with vocabulary σ = {S} ∪

{Pa | a ∈ Σ}. W is called an finite-word with alphabet Σ, if

(1) S is binary and all Pa are monadic,

(2) W = {0, . . . , n− 1}, n ∈ N is the set of word positions,

(3) SW = {(n, n+ 1) | n ∈W} is the successor relation, and

(4) PM
a = {i ∈ dom(w) | ith position carry a} and PM

a form a partition
of W .

If (1) and (3) are satisfied, W is called an extended (finite) word.

Introduction Finite automata and MSO Model Checking for LTL

MSO(Syntax)

The formulae of monadic second-order logic of vocabulary σ, denoted
MSO[σ], are defined simultaneously for all vocabularies σ by induction.

(1) If R,S ∈ σ are monadic, then R ⊆ S is in MSO [σ]

(2) If R1, . . . , Rk ∈ σ are monadic and S ∈ σ has arity k, then SR1 . . . Rk
is in MSO[σ].

(3) If φ and ψ are in MSO [σ] , then so are ¬φ, φ ∨ ψ and φ ∧ ψ.

(4) If φ is in MSO [σ∪̇{R}] and R is monadic, then ∃R φ and ∀R φ are
in MSO[σ]. Note that in this case the parameter σ changes.

Introduction Finite automata and MSO Model Checking for LTL

MSO(Semantics)

The satisfaction relation model is defined for all vocabularies σ, all σ
-structures A and all φ ∈ MSO[σ] along the same induction.

(1) A |= R ⊆ S iff RA ⊆ SA.

(2) A |= SR1 . . . Rk iff SA ∩
(
RA

1 × . . .×RA
k

)
6= ∅ or in other words iff

there are individuals a1 ∈ RA
1 , . . . , ak ∈ RA

k such that (a1, . . . , ak) ∈
SA.

(3) A � ¬φ iff not A � φ

(4) A � φ ∨ ψ iff A � φ or A � ψ holds.

(5) A � ∃X φ iff there is R ⊆ A s.t. A, [X → R] � φ.
A � ∀X φ iff for all R ⊆ A s.t. A, [X → R] � φ.

Introduction Finite automata and MSO Model Checking for LTL

Some shorthands

X = ∅ for ∀Y X ⊆ Y
sing(x) for ¬x = ∅ ∧ ∀X(X ⊆ x→ (x ⊆ X ∨X = ∅))
x ∈ P for sing(x) ∧ x ⊆ P
P = Q for P ⊆ Q ∧Q ⊆ P

Incl(P) means y ∈ PW implies x ∈ PW for all word positions x ≤ y

Incl(P) = ∀x∀y((sing(x) ∧ Sxy ∧ y ∈ P → x ∈ P))

x ≤ y := sing(y) ∧ ∀P (Incl(P) ∧ y ∈ P → x ∈ P)

Introduction Finite automata and MSO Model Checking for LTL

Büchi Theorem (over finite word)

Büchi Theorem [Büchi, 1960]

A language of finite words is recognizable by a finite state automaton iff
it is MSO-definable and both conversions from automata to formulae and
vice versa are effective.

Introduction Finite automata and MSO Model Checking for LTL

From NFA to MSO formulae

φA := ∃R̄(Part ∧ Init ∧ Trans ∧Accept)
Stateq(x) := x ∈ Rq
Part := ∀x(sing(x)→

∨
q∈Q

Stateq(x))

Init := ∃x(StateqI (x) ∧ ∀y(sing(y)→ x ≤ y))

Trans := ∀x∀y(sing(x)∧sing(y)∧S(x, y)→
∨

(q,a,q′)∈δ
(Stateq(x)∧

x ∈ Pa ∧ Stateq′(y)))

Accept : ∀x(∀y(y ≤ x ∧
∨
q∈F

Stateq(x)))

Introduction Finite automata and MSO Model Checking for LTL

From MSO formulae to NFA

We proceed using induction on φ. In order to apply induction, the state-
ment has to be modified such that not only infinite words, but also exten-
ded words are permitted. We have to express how extended words may be
represented by words. An MSO-formula φ(X1, . . . , Xn) with at most the
free variables X1, . . . , Xn is interpreted in a word with n designated sub-
sets P1, . . . , Pn. Such a model represents a word over expanded alphabet
A′ = A × {0, 1}n, where the label (a, c1, . . . , cn) of position p indicates
that p carries label a from A and that p belong to Pj iff cj = 1. For
instance, the ω-word model w∗ = (w,P1, P2) where w = abbaaaa . . . , P1

is the set of even numbers and P2 is the set of prime numbers, will be
identified with the follow ω-word over {a, b} × {0, 1}2 where

w a b b a a a a

P1 1 0 1 0 1 0 1 . . .

P2 0 0 1 1 0 1 0

Introduction Finite automata and MSO Model Checking for LTL

Base Case: If φ := X1 ⊆ X2, we have W′ � φ iff at every position x
the following condition holds: whenever 1 occurs in the first additional 0-1
component it also occurs in the second additional component. Therefore
the automaton Aφ verifies that the labels (Σ, 1, 0) does not occur in W ′.
We set Aφ = ({q}, q,Σ× {0, 1}2, δ, {q})

q0start

*

∗ := (Σ, 0, 0), (Σ, 0, 1), (Σ, 1, 1).

Introduction Finite automata and MSO Model Checking for LTL

If φ := SX1X2, then W′ � φ iff there are positions x and y, x ∈ X1, y ∈
X2 and (x, y) ∈ SW′ and at position x, 1 occurs in the first additional 0-1
component, at position y, 1 occurs in the second additional 0-1 component.
We can construct Aφ as follows:

q0start q1 q2

true

* **

true

∗ := (Σ, 1, 0), (Σ, 1, 1).
∗∗ := (Σ, 0, 1), (Σ, 1, 1).

Induction Step is followed by the properties of NFA we have shown.

Introduction Finite automata and MSO Model Checking for LTL

Check the emptiness of NFA

Introduction Finite automata and MSO Model Checking for LTL

ω-word

Let W =
(
W,SW,

(
PW
a

)
a∈Σ

)
be a structure with vocabulary σ = {S} ∪

{Pa | a ∈ Σ}. W is called an ω-word with alphabet Σ, if

(1) S is binary and all Pa are monadic,

(2) W = ω is the set of word positions,

(3) SW = {(n, n+ 1) | n ∈ ω} is the successor relation,

(4) PM
a form a partition of W .

Introduction Finite automata and MSO Model Checking for LTL

Büchi automata

An ω-automaton B = (Q,Σ, δ, qI , F) with acceptance component F ⊆
Q is called Büchi automaton if it is used with the following acceptance
condition (Büchi acceptance): A word w ∈ Σω is accepted by B iff there
exists a run r of B on w satisfying the condition: Inf(r) ∩ F 6= ∅ i.e. at
least one of the states in F has to be visited infinitely often during the
run. L(B) := {w ∈ Σω | B accepts w} is the ω-language recognized by
B.
A run r of B on w ∈ Σω is an infinite word over Q with r(0) = qI and
r(i+ 1) ∈ δ(r(i), w(i)), for all i ∈ ω. r is accepting if a final state occurs
infinitely often in r, i.e. F ∩ Inf(r) = ∅.
B accepts w if there is an accepting run of B on w. Otherwise, w is
rejected.

Introduction Finite automata and MSO Model Checking for LTL

Subset construction fails for NBA

q0start q1

a,b

b

b

{q0}start {q0, q1}

a

b

b

a

Introduction Finite automata and MSO Model Checking for LTL

NBA is more expressive than DBA

Assume that L((a + b)∗bω) = L(B) for some DBA B = (Q,Σ, δ, q0, F)
with Σ = {a, b}. Since the word w1 = bω ∈ L((a+ b)∗bω), there exists an
accepting state q1 ∈ F and a n1 ∈ N+ such that δ∗(q0, b

n1) = q1 ∈ F .
Now consider the word w2 = bn1abω ∈ L((a+b)∗bω). Since w2 is accepted
by a, there exists an accepting state q2 ∈ F and n2 ∈ N+, such that

δ∗(q0, b
n1abn2) = q2 ∈ F

Note that q1 6= q2, Continuing this process, we obtain a sequence n1, n2, n3, . . . ∈
N+ and a sequence q1, q2, q3, . . . of accepting states such that

δ∗(q0, b
n1abn2a . . . bni1abni) = qi ∈ F, i ≥ 1 . . .

However, there are only finitely many states in B, Contradiction.

Introduction Finite automata and MSO Model Checking for LTL

NBA is more expressive than DBA

q0start q1

a,b

b

b

q0start q1 q2 . . . qω

a,b

b

a

b

a

b b

b

Introduction Finite automata and MSO Model Checking for LTL

General Büchi automaton

A GNBA is a tuple G = (Q,Σ, δ, Q0,F) where Q,Σ, δ, Q0 are defined
as for NBA and F is a (possibly empty) subset of 2Q. The elements of F
are called accpectance sets. The accepted language Lω(G) consists of all
infinite words in (2AP)ω that have at least one infinite run q0q1q2 . . . in G
such that for each acceptance set F ∈ F there are infinitely many indices
i with qi ∈ F .

Generalized Büchi : F = {F1, . . . , Fk}, Fi ⊆ Q, if for all 1 ≤ i ≤ k,
inf(r) ∩ Fi 6= ∅, then r is accepted.

Introduction Finite automata and MSO Model Checking for LTL

Büchi Theorem (over infinite words)

Büchi Theorem [Büchi,1962]

An ω language is Büchi recognizable iff it is MSO-definable and the trans-
formation of Büchi automata into MSO formulae and conversely is effect-
ive.

Introduction Finite automata and MSO Model Checking for LTL

From Büchi automata to MSO formulae

φA := ∃R̄(Part ∧ Init ∧ Trans ∧Accept)
Stateq(x) := x ∈ Rq
Part := ∀x(sing(x)→ ∨

q∈Q
Stateq(x))

Init := ∃x(StateqI (x) ∧ ∀y(sing(y)→ x ≤ y))

Trans := ∀x∀y(sing(x)∧sing(y)∧S(x, y)→
∨

(q,a,q′)∈δ
(Stateq(x)∧

x ∈ Pa ∧ Stateq′(y)))

Inf(P) := ∀x(x ∈ P → ∃y(y ∈ P ∧ x < y))

InfOccq(P) := ∃Q(Q ⊆ P ∧Q ⊆ Rq ∧ Inf(Q))

Büchi(P) :=
∨
q∈F

InfOccq(P)

Accept := ∃X(Büchi(X))

Introduction Finite automata and MSO Model Checking for LTL

From MSO formulae to Büchi automata

This direction is similar to the discussion in proof of Büchi Theorem over
finite words. Use similar methods we can easily prove that Büchi automata
are closed under Union and Homomorphism. It remains to discuss whether
Büchi automata are closed under complement.

Introduction Finite automata and MSO Model Checking for LTL

Complement [Klarlund, 1997]

Let B be the NBA (Q,Σ, δ, qI , F), and let w ∈ Σω. The run graph G of
B for w is a graph (V,E,C), with

(i) the set of vertices V :=
⋃
i∈ω Si×{i}, where the Si s are inductively

defined by S := {qI} and Si+1 :=
⋃
q∈Si

δ(q, w(i)) for i ≥ 0

(ii) the set of edges E := {((p, i), (q, i + 1)) ∈ V × V | q ∈ δ(p, w(i))},
and

(iii) the set of marked vertices C := {(q, i) ∈ V | q ∈ F}

Corollary

Let G = (V,E,C) be a run graph of B, and let w ∈ Σ∗. Then, w /∈ L(B)
iff Inf(π) ∩ C = ∅, for all paths π in G.

Introduction Finite automata and MSO Model Checking for LTL

Some definitions

Let Q be a finite set. A sliced graph over Q is a graph G = (V,E,C),
where V ⊆ Q×ω,C ⊆ V , and for (p, i), (q, j) ∈ V , if ((p, i), (q, j)) ∈
E then j = i+ 1.
Note that a run graph is a sliced graph.

The sliced graph G = (V,E,C) is finitely marked if for all paths π in
G, Inf(π) ∩ C = ∅.
The ith slice Si is the set {q ∈ Q | (q, i) ∈ V }.
The width of G, ||G|| for short, is the limes superior of the sequence
(|Si|)i∈ω. In other words, the width of a sliced graph is the largest
cardinality of the slices S0, S1,

Introduction Finite automata and MSO Model Checking for LTL

cont.

The unmarked boundary U(G) is the set of vertices that do not have a
nontrivially reachable vertex that is marked, i.e.

U(G) := {v ∈ V | C ∩ (R(v) \ {v}) = ∅}

The finite boundary B(G) is the set of vertices that have only finitely
many reachable vertices, i.e.

B(G) := {v ∈ V | R(v) is a finite set}

Introduction Finite automata and MSO Model Checking for LTL

Lemma 1

Lemma 1

Let G = (V,E,C) be a sliced graph that is finitely marked. If V 6= ∅ then
U(G) 6= ∅

Proof.

Assume that U(G) = ∅. Let v0 be some vertex in V . Note that
R(v0) \ {v0} 6= ∅ because of the assumption U(G) = ∅. There is a finite
path from v0 to a vertex v1 with v0 6= v1 and v1 ∈ C, since v0 /∈ U(G).
The vertex v1 is not in U(G), since it is assumed that U(G) is empty. Re-
peating this argument we get an infinite sequence v0, v1, v2, . . . of distinct
vertices, where vi+1 is reachable from vi, for i ≥ 0. Furthermore, vi ∈ C,
for i > 0. This contradicts the assumption that G is finitely marked.

Introduction Finite automata and MSO Model Checking for LTL

Lemma 2

Lemma 2

Let G = (V,E,C) be a sliced graph. For every vertex v ∈ V \ B(G),
there exists an infinite path in G \ B(G) starting with v.

Proof.

If R(v) \ B(G) is infinite then, by König’s Lemma, there exists an infinite
path in G \ B(G) starting with v, since R(v) \ B(G) is infinite and
G \ B(G) is finitely branching. It remains to show that R(v) \ B(G) is
infinite. So, for a contradiction assume that R(v) \ B(G) is finite. Let
B := {u ∈ B(G) | there exists a u′ ∈ R(v) \ B(G) with (u′, u) ∈ E} .
The set B is finite since R(v) \ B(G) is finite and G is finitely branching.
Since B ⊆ B(G), we have that R(u) is finite, for all u ∈ B. We have the
following equality: R(v) = (R(v) \ B(G)) ∪

⋃
u∈B

R(u).

In particular, R(v) is a finite union of finite sets. This is not possible since
R(v) is infinite, for all v ∈ V \ B(G).

Introduction Finite automata and MSO Model Checking for LTL

Slices

Let G = (V,E,C) be a sliced graph. We define a sequence of sliced
graphs G0, G1, . . . and a sequence of sets of vertices V0, V1, . . . as
follows: G0 := G,V0 := B(G), and for i ≥ 0:

G2i+1 := G2i \ V2i V2i+1 := U(G2i+1)

G2i+2 := G2i+1 \ V2i+1 V2i+2 := B(G2i+1)

Introduction Finite automata and MSO Model Checking for LTL

Lemma 3

Lemma 3

Let G = (V,E,C) be a sliced graph that is finitely marked with ||G2i+1|| >
0, for some i ≥ 0. Then ||G2i+2|| < ||G2i+1||.

Proof.

Since ||G2i+1|| > 0 the set of vertices of G2i+1 is not empty. From Lemma
1 it follows that there is a vertex v0 ∈ U(G2i+1). From the definition
of G2i+1 = G2i \ V2i it follows that v0 ∈ V \ B(G) if i = 0, and
v0 ∈ V ′\ B(G2i−1) if i > 0, where V ′ is the set of vertices of G2i. From
Lemma 2 we can conclude that there exists an infinite path v0v1v2 . . . in
G2i+1. Obviously, vj ∈ U(G2i+1), for all j ≥ 0. Let vj = (qj , kj). It
holds ||G2i+2|| < ||G2i+1|| since each slice of G2i+2 with index kj does
not contain qj .

Introduction Finite automata and MSO Model Checking for LTL

Lemma 4

Lemma 4

Let G = (V,E,C) be a sliced graph that is finitely marked and let n =
||G||. Then G2n+1 is the empty graph.

Proof.

Note that n ≤ |Q| assuming V ⊆ Q × ω for some finite set Q. Assume
that G2n+1 is not the empty graph. It holds ||G2n+1|| > 0, since G2n+1 =
G2n \ B(G2n−1). From the lemma above it follows that n > ||G1|| >
||G3|| > . . . > ||G2n+1||. This contradicts ||G2n+1|| > 0.

Introduction Finite automata and MSO Model Checking for LTL

Progress measure

A progress measure of size m ∈ ω for a sliced graph G = (V,E,C) is a
function µ : V → {1, . . . , 2m+ 1} satisfying the following three
conditions:

(i) µ(u) ≥ µ(v), for all (u, v) ∈ E,

(ii) if µ(u) = µ(v) and (u, v) ∈ E then µ(u) is odd or v /∈ C, and

(iii) there is no infinite path v0v1v2 . . . ∈ V ω where µ(v0) is odd and
µ(v0) = µ(v1) = µ(v2) =

Introduction Finite automata and MSO Model Checking for LTL

Progress measure and Automata

Theorem

Let B = (Q,Σ, δ, qI , F) be a NBA and let w ∈ Σω. Then, B rejects w iff
there exists a progress measure of size |Q| for the run graph G = (V,E,C)
of B for w.

Proof.

(⇒:) Note that the run graph G is finitely marked by Corollary. Let µ :
V → {1, . . . , 2|Q|+ 1} be the function defined by µ(v) := i+ 1, where i
is the uniquely determined index with v ∈ Vi and v /∈ Vi+1. From Lemma
4 it follows that 1 ≤ i ≤ 2|Q| and thus µ is well-defined. It remains to
show that µ is a progress measure.
First, we show that there is no infinite path v0v1 . . . with µ(v0) = µ(v1) =
. . . where µ(v0) is odd. Assume that µ(v0) = 2i + 1 for v0 ∈ V . Then
v0 ∈ V2i. By definition of V2i, the vertices in V2i have only finitely many
reachable states in G if i = 0 and G2i−1 if i > 0. Thus, every path v0v1 . . .
with 2i+ 1 = µ(v0) = µ(v1) = . . . must be finite.

Introduction Finite automata and MSO Model Checking for LTL

Cont.

Proof.

Second, for (u, v) ∈ E, it holds µ(u) ≥ µ(v). This follows from the
fact that (i) u ∈ U(G′) implies v ∈ U(G′), and (ii) u ∈ B(G′) implies
v ∈ B(G′), for every sliced graph G′ = (V ′, E′, C ′) with (u, v) ∈ V .
Third, we show by contradiction that if µ(u) = µ(v) then µ(u) is odd or
v′ ∈ C, for (u, v) ∈ E. Assume that µ(u) is even and v ∈ C. Since µ(u)
is even, we have that u ∈ V2i+1 = U(G2i+1), for some 0 ≤ i ≤ |Q|. Since
v ∈ C, it holds u /∈ U(G2i+1). Contradiction!
(⇐:) Let µ : V → {1, . . . , 2|Q| + 1} be a progress measure for G. Let π
be an infinite path in G. Since µ is monotonicly decreasing, there exists a
k ≥ 0 with µ(π(k)) = µ(π(k + 1)) = By the definition of a progress
measure, µ(π(k)) must be even and µ(π(k)), µ(π(k+ 1)), . . . /∈ C. Thus,
the corresponding run of π is not accepting. Since π was chosen arbitrarily
there is no accepting run of B on w by Corollary.

Introduction Finite automata and MSO Model Checking for LTL

Construction

Let B = (Q,Σ, δ, qI , F) be a NBA. We can construct a NBA B′ with
2O(|Q|+|Q|log|Q|) states such that B accepts w ∈ Σω iff there exists a
progress measure of size |Q| for the run graph G of B for w. Let Ψ be
the set of partial functions from Q to {1, . . . , 2m + 1}. Note that the
cardinality of Ψ is |Q|O(|Q|) = 2O(|Q|log|Q|). Moreover, let fI ∈ Ψ be
the partial function, where fI(qI) := 2|Q| + 1 and fI(q) is undefined
for q 6= qI . Let B′ be the NBA (Ψ × P (Q),Σ, δ′, (fI , ∅),Ψ × ∅) with
(f ′, P ′) ∈ δ′((f, P), a) iff the following conditions are satisfied:

(1) q′ ∈ dom(f) iff there exists q ∈ dom(f) such that q′ ∈ δ(q, a).

(2) f ′ (q′) ≤ f(q), for q′ ∈ δ(q, a). Moreover, if q′ ∈ F and f(q) is even
then f ′ (q′) < f(q) .

(3) If P = ∅ then q ∈ P ′ iff f ′(q) is odd, for q ∈ dom (f ′)

(4) If P 6= ∅ then q′ ∈ P ′ iff there exists q ∈ P such that q′ ∈ δ(q, a)
and f(q) = f

′
(q′) is odd.

Introduction Finite automata and MSO Model Checking for LTL

Cont.

The number of the states of B′ is

|Ψ× P (Q)| = 2O(|Q|log|Q|) · 2|Q| = 2O(|Q|+|Q|log|Q|).

(⇒) Let r be an accepting run of B′ on w with r(k) = (fk, Pk), for
k ∈ ω and let G = (V,E,C) be the run graph of B for w. Let µ : V →
{1, . . . , 2|Q|+ 1} with µ(q, k) := f(q), for r(k) = (f, P).
It remains to show that µ is a progress measure for G. Because of condition
(1) it holds for all k ∈ ω that ((q, k), (q′, k+1)) ∈ E iff q ∈ dom(fk), q′ ∈
dom(fk+1), and q′ ∈ δ(q, w(k)). This can be easily shown by induction
over k. Let (v, v′) ∈ E. Because of condition (2), µ(v) ≤ µ(v′), and if
v′ ∈ C then µ(v) < µ(v′). Note that Pk = ∅, for infinitely many k ∈ ω,
since r is accepting. Hence, the conditions (3) and (4) ensure that there
is no infinite path v0v1 in G, where µ(v0) = µ(v1) = . . . and µ(v0) is
odd.

Introduction Finite automata and MSO Model Checking for LTL

⇒

Let µ : V → {1, . . . , 2|Q|+ 1} be a progress measure for the run graph
G = (V,E,C) of B for w. Note that w /∈ L(B) by Theorem. Let
fk : Q→ {1, . . . , 2|Q|+ 1} be the partial function where
fk(q) := µ(q, k), for q ∈ Sk, and otherwise fk is undefined. Let r be the
infinite word, with r(0) := (fI , ∅)and for k ≥ 0, r(k + 1) := (fk+1, Pk+1)
with

Pk+1 := {q ∈ Q | fk+1(q) is odd},

for Pk = ∅, and

Pk+1 := {q ∈ Q | fk(p) = fk+1(q) is odd and ((p, k), (q, k + 1)) ∈ E}

otherwise.

Introduction Finite automata and MSO Model Checking for LTL

⇐

By induction over k it is straightforward to show that r is a run of B′ on
w. It remains to show that r is accepting, i.e., there are infinitely many
k ∈ ω such that Pk = ∅. Assume that there is an n ∈ ω such that Pn = ∅
and Pn+1, Pn+2, . . . 6= ∅. Note that if q ∈ Pk with k > n then there
exists a p ∈ Pn+1 such that the vertex (q, k) is reachable from a vertex
(p, n+ 1) in G. Thus, there is an infinite path v0v1 . . . with vi = (qi, ki)
for i ≥ 0, and there is an infinite sequence of indices i0 < i1 < . . .
such that qij ∈ Pkij for all j ≥ 0. Since µ is a progress measure, it is

µ(vij′) ≤ µ(vij) for j′ ≥ j. Thus, there exists a k > n such that µ(vk) is
odd and µ(vk) = µ(vk+1) = . . . This contradicts the assumption that µ is
a progress measure.

Introduction Finite automata and MSO Model Checking for LTL

Check the emptiness of NBA

Lemma

Let B = (Q,Σ, δ, Q0, F) be an NBA. Then, the following two statements
are equivalent:
(a) L(B) 6= ∅,
(b) There exists a reachable accept state q that belongs to a cycle in B.

∃q0 ∈ Q0 ∃q ∈ F ∃w ∈ Σ∗ ∃v ∈ Σ+ q ∈ δ∗(q0, w) ∩ δ∗(q, v)

By the above lemma, the emptiness problem for NBA can be solved by
means of graph algorithms that explore all reachable states and check
whether they belong to a cycle.
Since the strongly connected components of a (finite) directed graph can
be computed in time linear in the number of states and edges, the time
complexity of this algorithm for the emptiness check of NBA B is linear in
the size of B.

Introduction Finite automata and MSO Model Checking for LTL

Decidability of MSO

MSO is decidable

By Büchi Theorem we may effectively construct an automaton A such
that A accepts A iff A � ¬φ. The question whether or not A � φ always
holds can be reduced to the question whether or not the language of A is
empty. And emptiness of all these languages is decidable.

Introduction Finite automata and MSO Model Checking for LTL

Outline

1 Introduction

2 Finite automata and MSO

3 Model Checking for LTL

Introduction Finite automata and MSO Model Checking for LTL

Transition System

A transition system TS is a tuple (S,Act,→, I, AP,L) where

S is a set of states

Act is a set of actions,

→⊆ S ×Act× S is a transition relation,

I ⊆ S is a set of initial states,

AP is a set of atomic propositions,

L : S → 2AP is a labeling function.

TS is called finite if S, Act, and AP are finite.

Introduction Finite automata and MSO Model Checking for LTL

An Example for TS

paystart

selectsoda beer

coin

τ
τ

soda

beer

Introduction Finite automata and MSO Model Checking for LTL

Path and Trace in TS

A finite path fragment π of TS is a finite state sequence s0s1 . . . sn such
that si ∈ Post(si−1) for all 0 < i ≤ n, where n ≥ 0.
An infinite path fragment π is an infinite state sequence s0s1s2 . . . such
that si ∈ Post(si−1)for all i > 0. For j ≥ 0, let π[j] = sj denote
the jth state of π. The jth suffix of π, notation π[j . . .], is defined as
π[j . . .] = sjsj+1 . . .
A maximal path fragment is either a finite path fragment that ends in a
terminal state, or an infinite path fragment.
A path fragment is called initial if it starts in an initial state.

A path of transition system TS is an initial, maximal path fragment.

Introduction Finite automata and MSO Model Checking for LTL

Traces in TS

Traces are sequences of the form L(s0)L(s1)L(s2) . . . that register the
(set of) atomic propositions that are valid along the execution. The traces
of a transition system are thus words over the alphabet 2AP , the sequence
of sets of atomic propositions that are valid in the states of the path.
A trace of state s is the trace of an infinite path fragment π with first(π) =
s. Accordingly, a finite trace of s is the trace of a finite path fragment that
starts in s. Let Traces(s) denote the set of traces of s, and Traces(TS)
the set of traces of the initial states of transition system TS:

Traces(s) = trace(Paths(s)), T races(TS) =
⋃
s∈I

Traces(s)

Introduction Finite automata and MSO Model Checking for LTL

Semantics of LTL over Paths and States

Let TS = (S,Act,→, I, AP,L) be a transition system without terminal
states, and let φ be an LTL-formula over AP .
For infinite path fragment π of TS, the satisfaction relation is defined by

π � φ iff trace(π) � φ.

For state s ∈ S, the satisfaction relation � is defined by

s � φ iff (∀π ∈ Paths(s) π � φ).

TS satisfies φ, denoted TS � φ, if Traces(TS) ⊆Words(φ).

Introduction Finite automata and MSO Model Checking for LTL

LTL(Syntax)

LTL formulae over the set AP of atomic proposition are formed
according to the following grammar:

φ ::= true | a | φ1 ∧ φ2 | ¬φ | ©φ | φ1Uφ2

where a ∈ AP .

Introduction Finite automata and MSO Model Checking for LTL

LTL(Semantics)

σ � true
σ � a iff a ∈ A
σ � φ1 ∨ φ2 iff σ � φ1 and σ � φ2

σ � ¬φ iff σ 2 φ
σ �©φ iff σ[1 . . .] � A1A2A3 � φ
σ � φ1Uφ2 iff ∃j ≥ 0 σ[j . . .] � φ2

and σ[i . . .] � φ1, for all 0 ≤ i < j
σ � 3φ iff ∃j ≥ 0 σ[j . . .] � φ
σ � 2φ iff ∀j ≥ 0 σ[j . . .] � φ
σ � 23φ iff ∃∞σ[j . . .] � φ
σ � 23φ iff ∀∞σ[j . . .] � φ

Introduction Finite automata and MSO Model Checking for LTL

Equivalence of LTL Formulae

LTL formulae φ1, φ2 are equivalent, denoted φ1 ≡ φ2, if Words(φ1) =
Words(φ2)

φUψ ≡ ψ ∨ (φ ∧©(φUψ))

¬(φUψ) ≡ ((φ ∧ ¬ψ)U(¬φ ∧ ¬ψ)) ∨�(φ ∧ ¬ψ)

φ1Rφ2
def
= ¬(¬φ1U¬φ2)

Introduction Finite automata and MSO Model Checking for LTL

Positive Normal Form

For a ∈ AP , LTL formulae in positive normal form (PNF) are given by

φ := true | false | a | ¬a | φ1 ∧ φ2 | ©φ | φ1Uφ2 | φ1Rφ2

For any LTL formula φ there exists an equivalent LTL formula φ in PNF
with |φ| = O(|φ|)

Introduction Finite automata and MSO Model Checking for LTL

The algorithm of Model Checking

This approach is based on the fact that each LTL formula φ can be repres-
ented by a NBA. The basic idea is to try to disprove TS � φ by “looking”
for a path π in TS with π 2 φ. If such a path is found, a prefix of π is
returned as error trace. If no such path is encountered, it is concluded that
TS � φ

TS |= φ iff Traces (TS) ⊆ Words (φ)

iff Traces (TS) ∩
((

2AP
)ω \ Words (φ)

)
= ∅

iff Traces (TS) ∩ Words (¬φ) = ∅

Introduction Finite automata and MSO Model Checking for LTL

Closure of φ

Closure of φ

The closure of LTL formula φ is the set closure(φ) consisting of all sub-
formulae ψ of φ and their negation ¬ψ (where ψ and ¬¬ψ are identified).

Elementary Sets of Formulae

B ⊆ closure(φ) is elementary if it is consistent with respect to propos-
itional logic, maximal, and locally consistent with respect to the until
operator.

Introduction Finite automata and MSO Model Checking for LTL

Elementary Sets of Formulae

The requirements for local consistency result from the expansion law

φ1Uφ2 ≡ φ2 ∨ (φ1 ∧©(φ1Uφ2))

Due to the required maximality and propositional logic consistency, we
have

ψ ∈ B if and only if ¬ψ /∈ B

for all elementary sets B and subformulae ψ of φ. Further, due to maxim-
ality and local consistency, we have

φ1, φ2 /∈ B implies φ1Uφ2 /∈ B

Hence, if φ1, φ2 /∈ B then {¬φ1,¬φ2,¬(φ1Uφ2)} ⊆ B (assuming that
φ1Uφ2 is a subformula of φ).

Introduction Finite automata and MSO Model Checking for LTL

GNBA for LTL Formulae [Vardi,Wolper, 1986

For any LTL formula φ (over AP) there exists a GNBA Gφ over the
alphabet 2AP such that

(1) Words(φ) = L(Gφ).

(2) Gφ can be constructed in time and space 2O(|φ|).

Let φ be an LTL formula over AP . Let Gφ = (Q, 2AP , δ, Q0,F) where

•Q is the set of all elementary sets of formulae B ⊆ closure (φ)
•Q0 = {B ∈ Q | φ ∈ B}
•F = {Fφ1Uφ2 | φ1Uφ2 ∈ closure(φ)} where

Fφ1Uφ2
= {B ∈ Q | φ1Uφ2 /∈ B or φ2 ∈ B}

The transition relation δ : Q× 2AP → 2Q is given by:

• If A 6= B ∩AP, then δ(B,A) = ∅
• If A = B ∩AP, then δ(B,A) is the set of all elementary sets
of formulae B′ satisfying
(i) for every © ψ ∈ closure (φ) :©ψ ∈ B ⇔ ψ ∈ B′, and
(ii) for every φ1Uφ2 ∈ closure (φ) :

φ1Uφ2 ∈ B ⇔ (φ2 ∈ B ∨ (φ1 ∈ B ∧ φ1Uφ2 ∈ B′))

Introduction Finite automata and MSO Model Checking for LTL

L(Gφ) = Words(φ)

⊇: Let σ = A0A1A2 . . . ∈ Words (φ). Then, σ ∈
(
2AP

)ω
and σ |= φ.

The elementary set Bi of formulae is defined as follows:

Bi = {ψ ∈ closure(φ) |AiAi+1 . . . � ψ}

Obviously, Bi is an elementary set of formulae, i.e., Bi ∈ Q. We now prove
that B0B1B2 . . . is an accepting run for σ. Observe that Bi+1 ∈ δ (Bi, Ai)
for all i > 0, since for all i :
•Ai = Bi ∩AP
• for © ψ ∈ closure(φ)

©ψ ∈ Bi
iff

AiAi+1 . . . |=©ψ iff
Ai+1Ai+2 . . . |= ψ iff
ψ ∈ Bi+1

Introduction Finite automata and MSO Model Checking for LTL

⊇

• for φ1 ∪ φ2 ∈ closure (φ):

φ1 ∪ φ2 ∈ Bi
iff

AiAi+1 . . . |= φ1Uφ2

iff
AiAi+1 . . . |= φ2 or
AiAi+1 . . . |= φ1 and Ai+1Ai+2 . . . |= φ1Uφ2

iff
φ2 ∈ Bi or (φ1 ∈ Bi and φ1Uφ2 ∈ Bi+1)

This shows that B0B1B2 . . . is a run of Gφ.

It remains to prove that this run is accepting, i.e., for each subformula
φ1,jUφ2,j in closure(φ), Bi ∈ Fj for infinitely many i.

Introduction Finite automata and MSO Model Checking for LTL

Assume there are finitely many i such that Bi ∈ Fj . We have:

Bi /∈ Fj = Fφ1,jUφ2,j
⇒ φ1,jUφ2,j ∈ Bi and φ2,j /∈ Bi

As Bi = {ψ ∈ closure(φ) | AiAi+1 . . . � ψ}, it follows that if Bi /∈ Fj ,
then:

AiAi+1 . . . � φ1,jUφ2,j and AiAi+1 . . . � φ2,j

Thus, AkAk+1 � φ2,j for some k > i. By definition of the formula sets
Bi, it then follows that φ2,j ∈ Bk, and by definition of Fj , Bk ∈ Fj .
Thus, Bi ∈ Fj for finitely many i, then Bk ∈ Fj for infinitely many k.
Contradiction.

Introduction Finite automata and MSO Model Checking for LTL

⊆
Let σ = A0A1A2 . . . ∈ L(Gφ), i.e., there is an accepting run B0B1B2 . . .
for σ in Gφ. Since δ(B,A) = ∅ for all pairs (B,A) with A 6= B ∩AP , it
follows that Ai = Bi ∩AP for i ≥ 0. Thus,
σ = (B0 ∩AP)(B1 ∩AP)(B2 ∩AP) . . .
We prove the following more general proposition:

ψ ∈ B0 ⇔ A0A1A2 . . . � ψ

by structural induction on the structure of ψ.
Base case: The statement for ψ = true or ψ = a with a ∈ AP follows
directly from the definition of closure.
Induction step: Based on the induction hypothesis that the claim holds
for ψ′, φ1, φ2 ∈ closure(φ), it is proven that for the formulae

ψ =©ψ′, ψ = ¬ψ′, ψ = φ1 ∧ φ2 and ψ = φ1Uφ2

the claim also holds. We only discuss ψ = φ1Uφ2. Let
A0A1A2 . . . ∈ (2AP)ω and B0B1B2 . . . ∈ Qω satisfying the constraints
(i) and (ii). It is now shown that:

ψ ∈ B0 iff A0A1A2 . . . � ψ

Introduction Finite automata and MSO Model Checking for LTL

⇐

Assume A0A1A2 . . . � ψ where ψ = φ1Uφ2. Then, there exists j ≥ 0
such that

AjAj+1 . . . � φ2 and AiAi+1 . . . � φ1 for 0 ≤ i < j

From the induction hypothesis (applied to φ1 and φ2) it follows that

φ2 ∈ Bj and φ1 ∈ Bi for 0 ≤ i < j.

By induction on j we obtain: φ1Uφ2 ∈ Bj , Bj−1 . . . , B0.

Introduction Finite automata and MSO Model Checking for LTL

⇒

Assume φ1Uφ2 ∈B0. Since B0 is elementary, φ1 ∈ B0 or φ2 ∈ B0.
Distinguish between φ2 ∈ B0 and φ2 /∈ B0. If φ2 ∈ B0, it follows from
the induction hypothesis A0A1 . . . � φ2, and thus A0A1 . . . � φ1Uφ2.
This remains the case φ2 ∈ B0. Then φ1 ∈ B0 and φ1Uφ2 ∈ B0.
Assume φ2 ∈ Bj for all j ≥ 0. From the definition of the transition
relation δ, we obtain using an inductive argument (successively applied to
φ1 ∈ Bj , φ2 ∈ Bj and φ1Uφ2 ∈ Bj for j ≥ 0):

φ1 ∈ Bj and φ1Uφ2 ∈ Bj for all j ≥ 0.

As B0B1B2 . . . satisfies constraint (ii), it follows that

Bj ∈ Fφ1Uφ2 for infinitely many j ≥ 0

Introduction Finite automata and MSO Model Checking for LTL

On the other hand, we have

φ2 /∈ Bj and φ1Uφ2 ∈ Bj iff Bj /∈ Fφ1Uφ2 for all j

Contradiction! Thus, φ2 ∈ Bj for some j ≥ 0. Without loss of generality,
assume φ2 /∈ B0, . . . , Bj1, i.e., let j be the smallest index such that
φ2 ∈ Bj . The induction hypothesis for 0 ≤ i < j yields

φ1 ∈ Bi and φ1Uφ2 ∈ Bi for all 0 ≤ i < j

From the induction hypothesis applied to φ1 and φ2 it follows that

AjAj+1 . . . � φ2 and AiAi+1 . . . � φ1 for 0 ≤ i < j

We conclude that A0A1A2 . . . � φ1Uφ2.

Introduction Finite automata and MSO Model Checking for LTL

Size of GNBA

States in the GNBA Gφ are elementary sets of formulae in closure(φ).
Let subf(φ) denote the set of all subformulae of φ. The number of states
in Gφ is bounded by 2|subf(φ)|, the number of possible formula sets. As
|subf(φ)| ≤ |φ|, the number of states in the GNBA Gφ is bounded by
2O(|φ|).

Introduction Finite automata and MSO Model Checking for LTL

Conclusion

Büchi Theorem for checking the decidabilty of MSO

LTL model-checking problem can be reduced into an emptiness prob-
lem for NBA

Introduction Finite automata and MSO Model Checking for LTL

References I

Christel Baier and Joost-Pieter Katoen.
Principles of model checking.
The MIT Press, Cambridge, Mass, 2008.
OCLC: ocn171152628.

Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roder-
ick Bloem, editors.
Handbook of Model Checking.
Springer International Publishing, Cham, 2018.

Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors.
Automata, logics, and infinite games.
Number 2500 in Lecture notes in computer science. Springer, Berlin ;
New York, 2002.

Leonid Libkin.
Elements of finite model theory.
Texts in theoretical computer science. Springer, Berlin, 2010.
OCLC: 837781579.

Introduction Finite automata and MSO Model Checking for LTL

References II

Shmuel Safra.
Complexity of automata on infinite objects.
PhD Thesis, Citeseer, 1989.

Wolfgang Thomas.
Languages, Automata, and Logic.
In Grzegorz Rozenberg and Arto Salomaa, editors, Handbook of
Formal Languages, pages 389–455. Springer Berlin Heidelberg, Berlin,
Heidelberg, 1997.

Introduction Finite automata and MSO Model Checking for LTL

Thanks for your attention!

	Introduction
	Finite automata and MSO
	Model Checking for LTL

