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Abstract  Firstly, the authors analyzed the properties of primary- ondition-
als and secondary-conditionals, establish the minimum system C2Lm of pri-
mary-conditionals and secondary-conditionals, and then prove some of the 
formal theorems of the system which have important intuitive meanings. 
Secondly, the authors constructed the neighborhood semantics, prove the 
soundness of C2Lm, introduce a general concept of canonical model by the 
neighborhood semantics, and then prove the completeness of C2Lm by the 
canonical model. Finally, according to the technical results of the minimum 
system C2Lm, the authors discuss some of the important problems concern-
ing primary-conditionals and secondary- onditionals. 
 
Keywords  logic of conditionals, primary-conditionals and secondary- on-
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Conditionals are characterized by the relationship between conditions and 
results. An ordinary logic of conditionals only characterizes results under a 
single condition, and the conjunction is applied in the cases of more than one 
conditions. However, sometimes this is not proper, because different condi-
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tions may be of different functions to achieve results, and the way to con-
junct them ignores the differences. Therefore, we need to directly deal with 
conditionals with multi-conditions.  

We will discuss conditionals with two different conditions-the primary 
and the secondary. Therefore, we have our logic named as the logic of pri-
mary-conditionals and secondary-conditionals (hereafter. LPSC). 

1  Basic ideas 

To consider two conditions and a single result at a time, we need a ternary 
connective ≥. The meaning of αβ≥γ is: 

(i)  conditions α and β lead to the result γ, 
(ii)  α is the primary condition, whereas, β is the secondary condition. 
Note that (ii) did not exclude the case that α is the secondary condition 

and β is the primary one, and we can have them at the same time. So ≥ 
characterizes a more general two-conditional. 

However, we can use the two-conditional to define the conditional in 
which the two conditions are strictly distinguished. (αβ≥γ)∧¬((βα≥γ) 
serves as an example, which confirms that α is only the primary condition 
and β only the secondary condition. 

With the two-conditional, we can also define the conditional with only a 
single condition: α＞γ is defined by αα≥γ.  

Item (i) says that, α and β lead to γ, which does not mean that γ cannot 
been achieved from α or β alone. The difference between primary and sec-
ondary conditions can be seen in that case. 

If two conditions lead to one result, and one of the conditions can lead to a 
result alone, then the other condition which cannot singly lead to a result 
cannot be the primary condition. 

We conclude from the hypothesis above that, if αβ≥γ holds, ¬(α＞γ) and 
β＞γ cannot both hold. That is to say, if both αβ≥γ and β＞γ hold, α＞γ 
also holds. Therefore, we have the following axiom: 

(αβ≥γ)∧(β＞γ)→(α＞γ). 
Nevertheless, in the case that αβ≥γ and α＞γ both hold, β＞γ does not nec-
essarily hold. Thus, the formula 

(αβ≥γ)∧(α＞γ)→(β＞γ) 
is not an axiom. 

LPSC with the axiom above is called a minimal LPSC. Certainly, primary 
and secondary conditionals are still conditionals, so they have the properties 
of conditionals. 

In our opinion (Liu 1999, pp. 58–64), to take ＞ as implication we de-
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mand at least: 
(i)  Truth preserving: If both α and α＞γ are true, then γ is also true. 

This can be formalized as the axiom: α∧(α＞γ)→γ  (or (α＞γ)→(α→γ)). 
(ii)  Completeness: If in every case, α implies γ, then α＞γ holds. 
α implying γ for all cases is just to say that α→γ holds, hence complete-

ness tells this deduction rule: α＞γ follows from α→γ. 
Conditionals can be regarded as necessary sentences with respect to the 

premises. α＞γ can be taken as □αγ. (Mao 1995, pp. 255–273) In our opin-
ion, a necessity operator demands at least: 

Monotonicity: γ→δ implies □αγ→□αδ, 
Conjunctivity: □α(γ∧δ)→□αγ∧□αδ is an axiom. (Liu, 2002, pp. 72–76) 
Therefore, the condition implication demands at least: 
(iii)  Monotonicity of results: γ→δ implies (α＞γ)→(α＞δ). 
(iv)  Conjunctivity of results: (α＞γ)∧(α＞δ)→(α＞γ∧δ) is an axiom. 
(ii) implies α＞α, and from α＞α as well as (iii) we obtain completeness. 

Hence, in the logic of conditionals, we often use the axiom α＞α instead of 
using the deduction rule: α＞γ follows from α→γ. 

Although the logic of conditionals does not necessarily satisfy the princi-
ple of compositionality (PC), we confine ourselves here to the logic satisfy-
ing PC. PC appears as the basic replacement theorem in systems. Classical 
connectives satisfy PC, and by monotonicity of results, so do the results. 
Hence, we just need to add the replacement principle of conditions. 

(v)  Replacement principle of conditions: α1↔α2 implies 
(α1＞γ)↔(α2＞γ). 

We need to generalize ＞ to ≥. That is to generalize (i), (iii), (iv), and (v) 
to the following respectively: 

(i′) α∧β∧(αβ≥γ)→γ is an axiom, 
(iii′) γ→δ implies (αβ≥γ)→(αβ≥δ), 
(iv′) (αβ≥γ)∧(αβ≥δ)→(αβ≥γ∧δ) is an axiom, 
(v′) α1↔α2 and β1↔β2 imply (α1β1≥γ)↔(α2β2≥γ). 

The generalization of “α＞α is an axiom” is “αβ≥α is an axiom”. Note that 
αβ≥β is not an axiom, which shows a difference between primary and sec-
ondary conditions. 

2  A minimal system of LPSC 

The formal language of LPSC is the language of classical propositional logic 
(only ¬ and ∧ as the connectives) together with the ternary connective ≥. 
We add to the formation rules of formulas: 

If α, β, γ are formulas, then αβ≥γ is also a formula. 
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The set of all formulas is denoted by Form. 
We use replacement α[γ/β] and substitution α(β1/p1, …, βn/pn) of a for-

mula α in their usual meaning. 
We define ∨, → and ↔ as in the classical propositional logic. We define 

＞, the single condition implication, as follows: 
α＞γ =df αα≥γ. 
The minimal system of LPSC, denoted by C2Lm, is stated as follows: 

Axioms 

(i) All instances of tautologies; 
(ii) Axiom of truth preserving:α∧β∧(αβ≥γ)→γ; 
(iii) Axiom of conjunctivity of results:(αβ≥γ)∧(αβ≥δ)→(αβ≥γ∧δ); 
(iv) Axiom of self-implication of the primary condition:αβ≥α; 
(v) Basic axiom of primary and secondary conditions: 

(αβ≥γ)∧(β＞γ)→(α＞γ). 

Deduction rules 

(i) Modus ponens (MP):  β follows from α and α→β; 
(ii) Monotonicity of results:(αβ≥γ)→(αβ≥δ) follows from γ→δ; 
(iii) Replacement of conditions: (α1β1≥γ)↔(α2β2≥γ) follows from 

α1↔α2 and β1↔β2. 
(In the notation C2Lm, C2 stands for “two-conditional”, and the subscript 

m means “minimal”.) 
We use |−α to mean “α is a theorem of C2Lm”, and the set of all C2Lm 

theorems is denoted by Th(C2Lm). 
The single condition implication defined in C2Lm meets the minimal de-

mands of condition implication.  
 
Theorem 2.1 (Properties of single condition implication) 
(i) Truth preserving: |− (α＞γ)→(α→γ); 
(ii) Self-implication: |− α＞α; 
(iii) Conjunctivity of results: |− (α＞γ)∧(α＞δ)→(α＞γ∧δ); 
(iv) Monotonicity of results: if |− γ→δ, then |− (α＞γ)→(α＞δ); 
(v) Completeness: if |− α→γ, then |− α＞γ; 
(vi) Replacement of conditions: |− α1↔α2, then |− (α1＞γ)↔(α2＞γ). 
Proof. It can be easily proved by the definition, and we omit the details 

here. ■ 
There are some important conclusions about the primary and secondary 

conditions in C2Lm. 
 
Theorem 2.2 (The completeness of the primary condition)  If |− α→γ, 



258 Front. Philos. China (2006) 2: 254−268

then |− αβ≥γ. 
Proof. The precondition and the rule of monotonicity of results implie 

(αβ≥α)→(αβ≥γ), and then with the axiom of self-implication of the pri-
mary condition, αβ≥α, we obtain αβ≥γ by MP. ■ 

 
Theorem 2.3 (A single condition is a primary condition)  If |− α＞γ, then 

|− αβ≥γ. 
Proof. From Theorem 2.1(i) and MP, we get α→γ, and then αβ≥γ is ob-

tained by Theorem 2.2. ■ 
Two conditions can lead to a result, while any single condition cannot. 

This is usually called non-degenerate, and is the situation we mainly talk 
about. 

 
Theorem 2.4 (Principle of non-degenerate)  |−(αβ≥γ)∧¬(α＞γ)→¬(β＞γ).
Proof. It can be easily obtained by the basic axiom of primary and secon-

dary conditions. ■ 
This principle tells us that whenever the primary condition cannot lead to 

any result alone, the two-conditional is non-degenerate.  
The primary condition can be a result (Axiom iv), but when can a secon-

dary condition be a result? That is related to whether the secondary condition 
is “unnecessary”. 

Let α and β be two conditions. If α can lead to β, then β is called unnec-
essary. 

 
Theorem 2.5  |− (αβ≥β)→(α＞β) 
Proof. The axiom (αβ≥β)∧(β＞β)→(α＞β) implies  

(β＞β) → ((αβ ≥ β)→(α＞β)). 
Hence by Theorem 2.1(ii) and MP, (αβ≥β)→(α＞β) is obtained. ■ 
From Theorem 2.3 (β for γ) and 2.5 we get 
 
Theorem 2.6 (The bi-condition of the secondary condition being a result)  

|−α＞β iff |−αβ≥β. ■ 
C2Lm satisfies PC (viz. the principle of compositionality): 
 
Theorem 2.7 (Replacement principle of results)  If |− γ1↔γ2, then  

|− (αβ≥γ1)↔( αβ≥γ2). 
Proof. By the rule of monotonicity of results. ■ 
 
Theorem 2.8 (Basic replacement theorem)  If |− β↔γ, then |− α↔α[γ/β] 
Proof. It is easy to prove by induction on formulas, hence we omit the de-

tails here. ■ 
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3  Neighborhood semantics 

We are going to construct the neighborhood semantics for LPSC. Note that 
the semantics are only an instance of the authors’ general neighborhood se-
mantics (Liu, 1995, pp. 52–56) in LPSC, and are of course not the same as 
the general neighborhood semantics which can be used in the study of the 
logic of conditionals. 

For any set A, we denote the power set of A by P(A), which is to say  
P(A) = {X | X ⊆ A}. 

 
Definition 3.1 (Neighborhood functions)  Let W be a non-empty set. A 

function from W to P(P(W)n) is called an n-ary neighborhood function on W. 
 
Definition 3.2 (Frames)  Assume K = <W, N>. If K satisfies: 
(i) W is a non-empty set with its elements called possible worlds and itself 

the set of possible worlds, 
(ii) N is a ternary neighborhood function on W, 

then we call K a frame. 

 
Definition 3.3 (Evaluations and models)  Let K = <W, N> be a frame, 

and V be a function from Form to P(W). If V satisfies: 
(i) x∈V(¬α)  iff  x∉V(α), 
(ii) x∈V(α∧β)  iff  x∈V(α) and x∈V(β), 
(iii) x∈V(αβ≥γ)  iff  <V(α), V(β), V(γ)>∈N(x), 

then we call V an evaluation on K, and <K, V> a model. 
We can learn from the definition that the classical connectives have the 

following properties: 
 
Lemma 3.4 
(i) V(¬α) = W \ V(α), 

V(α∧β) = V(α)∩V(β), 
V(α∨β) = V(α)∪V(β); 

(ii) If x∈V(α) and x∈V(α→β), then x∈V(β); 
(iii) V(α→β) = W  iff  V(α) ⊆ V(β); 
(iv) V(α↔β) = W  iff  V(α) = V(β). 
 
Definition 3.5 (Satisfaction)  Let K = <W, N> be a frame. 
(i) Let V be an evaluation on K. If V(α) = W, then we say <K, V> 

satisfies α, denoted by <K,V> | = α. 
(ii) If for any evaluation V on K, we have <K, V> |= α, then we say K 
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satisfies α, denoted by K |= α. 
(K |= α, if for any evaluation V on K, we have V(α) = W.) 
Therefore, K |=/ α, if there exists an evaluation V on K, such that  

V(α) ≠ W. 
The notion of satisfaction can be generalized to classes of frames. Let Σ 

be a class of frames. If for any K∈Σ, we have K |= α, then we say Σ satisfies 
α, denoted by Σ |= α. 

Hence, Σ |=/ α, if there exist K∈Σ and an evaluation V on K, such that  
V(α) ≠ W. 

Unlike other semantics, in neighborhood semantics the minimal logic 
characterized by all frames makes no sense, since the neighborhood function 
N characterizes a most general ternary connective. Thus, we need those 
frames characterizing primary and secondary conditionals. 

 
Definition 3.6 (Frames of primary and secondary conditionals)  Let  

K = <W, N> be a frame. If K satisfies: 
(i) Truth preserving: if <S, P, Q>∈N(x) and x∈S∩P, then x∈Q, 
(ii) Monotonicity: if <S, P, Q1>∈N(x) and Q1 ⊆ Q2, then  

<S, P, Q2>∈N(x), 
(iii) Conjunctivity of results: if <S, P, Q1>∈N(x) and <S, P, Q2>∈N(x), 

then <S, P, Q1∩Q2>∈N(x), 
(iv) Completeness of the primary condition: if S ⊆ Q, then  

<S, P, Q>∈N(x), 
(v) Basic property of primary and secondary conditions: if  

<S, P, Q>∈N(x) and <P, P, Q>∈N(x), then <S, S, Q>∈N(x), 
then we call K a frame of primary and secondary conditionals, or a C2-frame 
for short. 
The class of all frames of primary and secondary conditionals is denoted by 
Σ(C2). 
The minimal system C2Lm of LPSC is sound with respect to Σ(C2). 
 

Lemma 3.7  Given any C2-frame K, and any axiom α of C2Lm, K |= α 
holds. 

Proof. Let K = <W, N> be given. We prove V(α) = W, for any evaluation 
V on K. 

Axiom (i): Clearly. 
Axiom (ii): If x∈V(α∧β∧(αβ≥γ)), then x∈V(α∧β) and x∈V(αβ≥γ). 

Therefore,  
x∈V(α∧β) and <V(α), V(β), V(γ)>∈N(x). 

By truth preserving of C2-frames, we have x∈V(γ). Hence, 
V(α∧β∧(αβ≥γ)) ⊆ V(γ). 
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Then by Lemma 3.4(iii), we obtain V((α∧β∧(αβ≥γ)→γ) = W. 
Axiom (iii): If x∈V((αβ≥γ)∧(αβ≥δ)), then x∈V(αβ≥γ) and 

x∈V(αβ≥δ). Therefore, 
<V(α), V(β), V(γ)>∈N(x) and <V(α), V(β), V(δ)>∈N(x). 

By conjunctivity of results of C2-frames, we have <V(α), V(β), 
V(γ)∩V(δ)>∈N(x). Hence, 

<V(α), V(β), V(γ∧δ)>∈N(x). 
That is x∈V(αβ≥γ∧δ) and thus V((αβ≥γ)∧(αβ≥δ)) ⊆ V(αβ≥γ∧δ). 
Then by Lemma 3.4(iii), we obtain V((αβ≥γ)∧(αβ≥δ)→(αβ≥γ∧δ)) = W. 

Axiom (iv):For any x∈W, by V(α) ⊆ V(α), and completeness of the 
primary condition of C2-frames, we have 

<V(α), V(β), V(α)>∈N(x). 
Therefore x∈V(αβ≥α), and hence V(αβ≥α) = W. 

Axiom (v): If x∈V((αβ≥γ)∧(β＞γ)), then x∈V(αβ≥γ) and x∈V(β＞γ). 
Therefore, 

<V(α), V(β), V(γ)>∈N(x) and <V(β), V(β), V(δ)>∈N(x). 
By the basic property of primary and secondary condition of C2-frames, 

we have 
<V(α), V(α), V(γ)>∈N(x), 

and hence x∈V(α＞γ). Therefore, 
V((αβ≥γ)∧(β＞γ)) ⊆ V(α＞γ). 

Then by Lemma 3.4(iii), we obtain V((αβ≥γ)∧(β＞γ)→(α＞γ)) = W. ■ 
 
Lemma 3.8  Given any C2-frame K. 
(i) If K |= α and K |= α→β, then K |= β; 
(ii) if K |= γ→δ, then K |= (αβ≥γ)→(αβ≥δ); 
(iii) if K |= α1↔α2 and K |= β1↔β2, then K |= (α1β1≥γ)↔(α2β2≥γ). 
Proof. 
(i) For any evaluation V on K, we have V(α) = V(α→β) = W. Then 

we get V(α) ⊆ V(β), and hence V(β) = W. Therefore, K |= β. 
(ii) For any evaluation V on K, we have V(γ→δ) = W, and hence  

V(γ) ⊆ V(δ). 
If x∈V(αβ≥γ), then <V(α), V(β), V(γ)>∈N(x). By monotonicity of 

C2-frames, we have 
<V(α), V(β), V(δ)>∈N(x). 

Thus x∈V(αβ≥δ). 
That proved V(αβ≥γ) ⊆ V(αβ≥δ). Therefore,  

V((αβ≥γ)→(αβ≥δ)) = W, 
and hence, K |= (αβ≥γ)→(αβ≥δ). 

(iii) For any evaluation V on K, we have V(α1↔α2) = W and V(β1↔β2) = 
W. Therefore, 
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V(α1) = V(α2) and V(β1) = V(β2). 
For any x, 

x∈V(α1β1≥γ)  iff  <V(α1), V(β1), V(γ)>∈N(x) 
iff  <V(α2), V(β2), V(δ)>∈N(x) 
iff  x∈V(α2β2≥γ). 

That proved V(α1β1≥γ) = V(α2β2≥γ). Therefore, 
V((α1β1≥γ)↔(α2β2≥γ)) = W, 

and hence, K |= (α1β1≥γ)↔(α2β2≥γ). ■ 
 

Theorem 3.9 (Soundness theorem)  If |− α, then Σ(C2) |= α. 
Proof. For any proof α1, …, αn of α, given any K∈Σ(C2), we prove 

K |= αi by induction. Lemma 3.7 and 3.8 will be used in the proof, and the 
details are omitted here. ■ 

4  Canonical models 

We define derivation as in an ordinary modal logic. 
 

Definition 4.1 (Derivation)  Let u be a set of formulas, and α be a for-
mula. If there exist ϕ1, …, ϕn∈u, such that |− ϕ1∧…∧ϕn→α, then we say α is 
derived from u, denoted by u |− α. 

Note that n can be 0, and if so, |− ϕ1∧…∧ϕn→α is just |− α. 
The derivation defined above satisfies basic properties of derivation. 
 

Theorem 4.2 (Basic properties of derivation) 
(i) Monotonicity: If u |− α and u ⊆ v, then v |− α; 
(ii) Transitivity: If v |− α and u |− α for all α∈v, then u |− α; 
(iii) Deduction theorem: u∪{ϕ} |− α  iff  u |− ϕ→α. 
Although the definition of derivation is not the same as that of classical 

propositional logic, we can likewise use the notion of derivation to define 
consistency and maximal consistency. 

 
Definition 4.3 (Consistency) 
(i) Let u be a set of formulas. If there is no formula α, such that both 

u |− α and u |− ¬α hold, then we say that u is consistent. 
(ii) Let u be a consistent set of formulas. If for any α∉u, u∪{α} is not 

consistent, then we say that u is maximal consistent. 
Lemma 4.4 (Properties of consistent sets) 
(i) u is inconsistent iff there exists a formula α, such that u |− α and 

u |− ¬α. 
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(ii) u is inconsistent iff for any formula α, u |− α. 
(iii) u is consistent iff there exists a formula α, such that u |−/ α. 
(iv) u is consistent iff every finite subset of u is consistent. 
(v) u |−/ α iff u∪{¬α} is consistent. ■ 
 
Lemma 4.5 (Properties of maximal consistent sets)  Let u be a maximal 

consistent set, and α, β be formulas. 
(i) If u |− α, then α∈u. Particularly, if |− α, then α∈u. 
(ii) ¬α∈u  iff  α∉u. 
(iii) α∧β∈u  iff  α∈u and β∈u. 
(iv) If α, α→β∈u, then β∈u. 
(v) If α, β, αβ≥γ∈u, then γ∈u. ■ 

Every consistent set can be extended to be maximal consistent. Hence, 
 

Lemma 4.6 
(i) If |−/ α, then there exists a maximal consistent set u, such that α∉u. 
(ii) If |−/ α→β, then there exists a maximal consistent set u, such that 

α∈u and β∉u. ■ 
Assume W = {u | u is a maximal consistent set}, | α | = {u∈W | α∈u}, 

then we have: 
 
Lemma 4.7 
(i) u∈| α |  iff  α∈u. 
(ii)  | ¬α | = W \ | α |. 
(iii)  | α∧β | = | α |∩| β |. 
(iv)  | α | ⊆ | β |  iff  |− α→β. 
(v) | α | = | β |  iff  |− α↔β. ■ 
Unlike other semantics, canonical models in neighborhood semantics are 

not unique. They are not concretely constructed, but are actually defined by 
some properties. The models satisfying those properties are all called ca-
nonical models. 

 
Definition 4.8 (Canonical models)  Assume K = <W, N>. Let V be an 

evaluation on K. If: 
(i) W = { u | u is a maximal consistent set}, 
(ii) <| α |, | β |, | γ |>∈N(u)  iff  αβ≥γ∈u, 

and (iii) for any propositional variable p, V(p) = | p | holds, 
then we call <K, V> a canonical model. 

The essential feature of canonical models can be seen in the following 
theorems: 

 



264 Front. Philos. China (2006) 2: 254−268

Theorem 4.9 (Basic theorem on canonical models)  Let <K, V> be a ca-
nonical model. For any formula ϕ, | ϕ | = V(ϕ) holds. That is, u∈V(ϕ) iff 
ϕ∈u. 

Proof. We prove the theorem by induction on formulas. We omit the proof 
of ϕ being a propositional variable, ϕ = ¬α and ϕ = α∧β. 

Assume ϕ = αβ≥γ. By induction hypothesis, | α | = V(α), | β | = V(β), | γ | = 
V(γ). Therefore, 

u∈V(ϕ) iff  u∈V(αβ≥γ) 
   iff  <V(α),V(β),V(γ)>∈N(u) by 3.3(iii) 

iff  <| α |, | β |, | γ |>N(u)  by induction hypothesis 
iff  αβ≥γ∈u     by 4.8(ii) 
iff  ϕ∈u. ■ 

From the basic theorem on canonical models and the properties of maximal 
consistent sets, we get: 

 
Theorem 4.10  Let <K, V> be a canonical model. For any formula α,  

<K, V> |= α iff |− α. 
Proof. Assume |− α. For any u∈W, we get α∈u by lemma 4.5 (i). There-

fore, 
| α | = W. 

By Theorem 4.9, V(α) = | α | = W, and hence <K, V> |= α. 
Assume |−/ α. By lemma 4.6(i), there exists u∈W, such that α∉u. There-

fore, 
| α | ≠ W. 

Then by theorem 4.9, V(α) = | α | ≠ W, and hence <K, V> |=/ α. ■ 

5  Completeness 

Completeness says: if Σ(C2) |= α, then |− α; that is to say, if |−/ α, then Σ(C2) 
|=/ α. Let <K, V> be a canonical model. For every α, |−/ α implies <K, V> |=/ α, 
and if we have K∈Σ(C2), then Σ(C2) |=/ α can be obtained. Thereby in order 
to prove the completeness by the canonical model method, it will be suffi-
cient to prove that we can find a canonical model <K, V>, such that 
K∈Σ(C2). 

We construct a model <K*, V*> where K* = <W, N> as follows: 
(i) W = { u | u is a maximal consistent set}; 
(ii) N0(u) = {<| α |, | β |, Q> | there exists αβ≥γ∈u, such that | γ | ⊆ Q}, 

N1(u) = {<S, P, Q> | S ⊆ Q}, 
N(u) = N0(u)∪N1(u); 

(iii) for any propositional variable p, V*(p) = | p | holds. 
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We prove first that <K*, V*> is a canonical model. 
Theorem 5.1  <K*, V*> is a canonical model. 
Proof. According to the definition of canonical models, it’s sufficient to 

prove: 
<| α |, | β |, | γ |>∈N(u)  iff  αβ≥γ∈u. 

Assume αβ≥γ∈u. Since | γ | ⊆ | γ |, <| α |, | β |, | γ |>∈N0(u), and thus  
<| α |, | β |, | γ |>∈N(u). 

Assume <| α |, | β |, | γ |>∈N(u). There aree two cases: 
(i) <| α |, | β |, | γ |>∈N0(u). Then by the definition, there exists α′β′≥γ′∈u, 

such that 
| α′ | = | α |, | β′ | = | β |, | γ′ | ⊆ | γ |. 

By Lemma 4.7(iv)&(v), we have 
|− α′↔α，|− β′↔β and |− γ′→γ. 

By |− α′↔β, |− β′↔β, and the rule of replacement of conditions, we have then 
|− (α′β′≥γ′)↔(αβ≥γ′). 

Then, by α′β′≥γ′∈u, we get αβ≥γ′∈u. 
By |− γ′→γ and the rule of monotonicity of results, we obtain  

|− (αβ≥γ′)→(αβ≥γ), 
and finally by αβ≥γ′∈u we get αβ≥γ∈u. 

(ii) <| α |, | β |, | γ |>∈N1(u). We get | α | ⊆ | γ | by the definition, and then 
by Lemma 4.7(iv), we have |− α→γ. By the completeness of the primary 
condition (theorem 2.2), we get |− αβ≥γ, and finally αβ≥γ∈u. ■ 
We now prove that K* is a C2-frame. 

 
Theorem 5.2  K* is a C2-frame. 
Proof. We verify all five properties of C2-frames. 
(i) Truth preserving. 
If <| α |, | β |, Q>∈N0(u) and u∈| α |∩| β |, then 

there exists αβ≥γ∈u, such that | γ | ⊆ Q. 
By u∈| α |∩| β | we get α, β∈u, and then by αβ≥γ∈u and lemma 4.5(v), 

γ∈u holds. 
Therefore, u∈| γ |, and hence u∈Q. 

If <S, P, Q>∈N1(u) and u∈S∩P, then S ⊆ Q, and hence u∈Q. 
(ii) Monotonicity. 
If <| α |, | β |, Q1>∈N0(x) and Q1 ⊆ Q2, then 

there exists αβ≥γ∈u, such that | γ | ⊆ Q1. 
Therefore, 

there exists αβ≥γ∈u, such that | γ | ⊆ Q2. 
Hence, <| α |, | β |, Q2>∈N0(x). 

If <S, P, Q1>∈N1(x) and Q1 ⊆ Q2, then S ⊆ Q1. So S ⊆ Q2, and thus  
<S, P, Q2>∈N1(x). 
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(iii) Conjunctivity of results. 
(a) If <S, P, Q1>∈N0(x) and <S, P, Q2>∈N0(x), then 

there exist α1β1≥γ1, α2β2≥γ2∈u, such that | γ1 | ⊆ Q1, | γ2 | ⊆ Q2, 
and 

S = | α1 | = | α2 |，P = | β1 | = | β2 |. 
Therefore, |− α1↔α2，|− β1↔β2. By |− α1↔α2, |− β1↔β2 and the rule of re-
placement of conditions, 

|− (α1β1≥γ1)↔(α2β2≥γ1). 
Then by α1β1≥γ1∈u, we have 

α2β2≥γ1∈u. 
By α2β2≥γ1, α2β2≥γ2∈u and the axiom of conjunctivity of results, 

α2β2≥γ1∧γ2∈u. 
Hence, 

there exists α2β2≥γ1∧γ2∈u, such that | γ1∧γ2 | ⊆ Q1∩Q2. 
Therefore, <S, P, Q1∩Q2>∈N0(x). 

(b) If <S, P, Q1>∈N1(x) and <S, P, Q2>∈N1(x), then 
S ⊆ Q1 and S ⊆ Q2. 

Therefore, S ⊆ Q1∩ Q2, and hence <S, P, Q1∩Q2>∈N1(x). 
(c) If <S, P, Q1>∈N0(x) and<S, P, Q2>∈N1(x), then 
there exists αβ≥γ∈u, such that | γ | ⊆ Q1, and S = | α |, P = | β |, S ⊆ Q2. 

Therefore, 
| γ∧α | = | γ |∩S ⊆ Q1∩Q2. 

By αβ≥γ, αβ≥α∈u and the axiom of conjunctivity of results, we get 
αβ≥γ∧α∈u. Hence, 

there exists αβ≥γ∧α∈u, such that | γ∧α | ⊆ Q1∩Q2. 
Therefore, <S, P, Q1∩Q2>∈N0(x). 

(d) If <S, P, Q1>∈N1(x) and <S, P, Q2>∈N0(x), then the proof is similar to 
the case (c). 

(iv) Completeness of the primary condition. 
If S ⊆ Q, then <S, P, Q>∈N1(x). 

(v) The basic property of primary and secondary conditions. 
(a) If <S, P, Q>∈N0(x) and <P, P, Q>∈N0(x), thenthere exist 
α1β1≥γ1, α2β2≥γ2∈u, such that | γ1 | ⊆ Q, | γ2 | ⊆ Q, 

and 
S = | α1 |, P = | β1 | = | α2 | = | β2 |, Q = | γ1 | = | γ2 |. 

Therefore, 
| γ1∨γ2 | ⊆ Q, |− β1↔α2, |− β1↔β2, |− γ1↔γ2. 

By |− β1↔α2, |− β1↔β2 and the rule of replacement of conditions, we have 
|− (α2β2≥γ2)↔(β1β2≥γ2) and |− (β1β2≥γ2)↔( β1β1≥γ2). 

By |− γ1↔γ2 and the replacement principle of results (Theorem 2.7), 
|− (β1β1≥γ2)↔( β1β1≥γ1). 
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Then by the three bi-conditionals above, we get 
|− (α2β2≥γ2)↔( β1β1≥γ1). 

By α2β2≥γ2∈u,  
β1β1≥γ1∈u. 

By α1β1≥γ1, β1β1≥γ1∈u and the rule of monotonicity of results,  
α1β1≥γ1∨γ2, β1β1≥γ1∨γ2∈u. 

Then by the basic axiom of primary and secondary conditions, 
α1α1≥γ1∨γ2∈u. 

Hence,there exists α1α1≥γ1∨γ2∈u, such that | γ1∨γ2 | ⊆ Q. 
Thereby <S, S, Q>∈N0(x). 

(b) If <S, P, Q>∈N0(x) and <P, P, Q>∈N1(x), then 
there exists αβ≥γ∈u, such that | α | = S, | β | = P, | γ | ⊆ Q, and P ⊆ Q. 

Therefore, 
| γ∨β | ⊆ Q. 

By αβ≥γ∈u and the rule of monotonicity of results, 
αβ≥γ∨β∈u. 

By Theorem 2.2, ββ≥γ∨β∈u, and then by the basic axiom of primary and 
secondary conditionals, 

αα≥γ∨β∈u. 
Hence,there exists αα≥γ∨β∈u, such that | γ∨β | ⊆ Q. 
Thus <S, S, Q>∈N0(x). 

(c) If <S, P, Q>∈N1(x), then S ⊆ Q, and hence <S, S, Q>∈N1(x). ■ 
 
Theorem 5.3 (Completeness theorem)  If Σ(C2) |= α, then |− α. 
Proof. It’s sufficient to prove: if |−/ α, then Σ(C2) |=/ α. 
If |−/ α, by Theorem 5.1, <K*, V*> is a canonical model, and then by 

theorem 4.10, <K*, V*> |=/ α. Hence K* |=/ α. Since K*∈Σ(C2) by Theorem 
5.2, we have Σ(C2) |=/ α then. ■ 

6  Discussions 

6.1  Monotonicity of conditions 

Among the properties of condition implication, monotonicity is of great im-
portance. Actually, there are two different monotonicities. 

Monotonicity a: If a single condition α can lead to a result γ, then two 
conditions α and β can also do. 

Monotonicity b: If β logically implies α (viz. β→α is a tautology) and 
condition α can lead to result γ, then condition β can also lead to γ. 

Lots of examples falsify Monotonicity a. In the logic of conditionals with 
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only single conditions, we put two conditions α and β together as a single 
condition α∧β. Therefore, the falsity of Monotonicity a implies that of 
Monotonicity b. Nevertheless, it is not suitable to conjunct α and β as α∧β, 
since ∧ is an extensive connective. 

If we do not conjunct two conditions, we will not have an example falsi-
fying Monotonicity b. Hence, in the logic of conditionals with only single 
conditions, we can consider those systems in which Monotonicity b holds, in 
spite of those examples falsifying Monotonicity a. 

Our system certainly distinguishes the two-conditionals of the form αβ≥γ 
and the one-conditionals of the form α∧β＞γ. One can easily prove: there 
exists K∈Σ(C2), such that K|=/ αβ≥γ↔α∧β＞γ. Hence, by the soundness 
theorem, |−/ αβ≥γ↔α∧β＞γ. 

6.2  Implication paradox 

An example of the so-called “implication paradox” is “a false proposition 
implies any proposition”, which also holds in the logic of conditionals. A 
similar example “an inconsistent proposition implies any proposition”, 
however, leads to two different understandings. One is to take the inconsis-
tent proposition as a single proposition, namely, the constant false proposi-
tion. The other is to regard it as two conflicting propositions, and the exam-
ple now becomes “two conflicting propositions imply any propositions”. In 
our system, those two understandings are different: “two conflicting proposi-
tions imply any propositions” can be formalized as α(¬α)≥γ, which can be 
proved not a theorem of our system. 

6.3  Existence of primary conditions 

Assume that conditions α and β can lead to a result γ. α and β can both be 
primary conditions in our system. However, it has not been demanded that 
one of α and β is a primary condition. If we introduce the existence of pri-
mary conditions, 

If two conditions can lead to a result, then one of the conditions is a pri-
mary condition. 

we can use (αβ≥γ)∨(βα≥γ) to mean “α and β can lead to γ”, which is a 
more general method. As far as whether the existence of primary conditions 
holds or not, we need to study further into the two-conditionals of daily lan-
guages. 
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6.4  Extensions of our system 

We have only constructed a minimal system of LPSC in this article. How-
ever, it can be extended to more complicated systems. There are two differ-
ent ways: 

(i) Consider similar axioms to those of the logic of conditionals with sin-
gle conditions. For example, of the axiom of disjunction of conditions, we 
can consider the primary and secondary conditions respectively. Another 
example is the axiom of elimination of unnecessary conditions:  

(αβ≥γ)∧(α＞β)→(α＞γ). 
(ii) Consider properties different from those of the logic of conditionals 

with single conditions. For example, we can add to the system axioms of 
Monotonicity b with respect to primary and secondary conditions respec-
tively, and we can also add to it an axiom saying “two conflicting proposi-
tions imply any propositions”, and so on. 
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