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Motivation of Zero-Knowledge

Intuitively, a zero knowledge proof system is a way of convincing someone
of a fact without giving them any additional knowledge.

Prime Factorisation(Counterexample)
A know that 26781 is not a prime number since he knows that 26781
is equal to 113 times 237. To prove “26781 is not a prime number”
to B, it’s natural for A to demonstrate that 26781 = 113 × 237.
However, in this example, B not only is convinced that 26781 is not
a prime number, but also learns its factorization.

Color Non-blindness
A have two balls: one is red, the other is green. They are identical
except for the color. To B, who is color-blind, they are completely
identical. A wants to prove to B that these two balls have different
colors without revealing the exact color each ball has. What should A
do?
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What does “Proof” mean?

It is often regarded that saying a language (a subset of string over a given
alphabet) L ∈ NP is equivalent to saying that there is a polynomial time
“proof system” for L. The proof system we have in mind is one where on
input x, a “prover” creates a string α, and the “verifier” then computes on
x and α in time polynomial in the length of the binary representation of x
to check that x is indeed in L.
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Desired Properties of Zero-Knowledge Interactive Proof
System

Completeness: If x ∈ L, then, with very high probability, the verifier
is “convinced” of this statement, after interacting with the prover.

Soundness:If x /∈ L, then no matter what the prover does, with very
high probability, prover fails to fool the verifier.

Zero-Knowledge: The verifier will not learn anything from the inter-
action apart from the fact that the statement is true.
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Probabilistic Polynomial Time Turing Machine
A probabilistic Turing machine (PTM) M is a type of nondeterministic
Turing machine where each nondeterministic step is called a (fair) coin-
flip step and has two at most legal next moves. We assign a probability
to each branch b of M ’s computation on input x as follows. Define the
probability of branch b to be

Pr[b] = 2−k

where k is the number of coin-flip steps that occur on branch b.
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Define the probability that M accepts x to be

Pr[M accepts x] =
∑

b is an accept branch
Pr[b]

In other words, the probability that M accepts x is the probability that A
would reach an accepting configuration if A simulated M on x by flipping
a coin to determine which move to follow at each coin-flip step. We let

Pr[M rejects x] = 1 − Pr[M accepts x]

Define that M recognizes language L if
(1) x ∈ L implies Pr[M accepts w] > 1

2 , and
(2) x /∈ L implies Pr[M rejects w] ≥ 1

2
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Expected Polynomial-Time
Assume PTM M always halts. Let Ax = {α | M(x, α) accpts after|α| moves }.

expecttimeM(x) = Σα∈Ax |α| · 2−|α|

Then expected time complexity of M is

tM(n) = max{expecttimeM(x) | |x| = n}

TM M is called “expected polynomial-time” if there exists a polynomial
function Q(x) such that, for all x ∈ L(M), tM(|x|) is bounded above by
Q(|x|).
Let

ETIME(t(n)) = {L(M) | M is a PTM and tM(n) ≤ (t(n))}

Let PP be the set of all languages recognized by Polynomial PTM. Then

PP =
⋃
k>0

ETIME(nk)
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Interactive Turing machine

An interactive Turing machine (ITM) is essentially a PTM equipped with
a read-only input tape, a work tape, a random tape, one read-only com-
munication tape, and one write-only communication tape.
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Interactive Protocol
An interactive protocol is an ordered pair of ITMs 〈P,V〉 such that P and
V share the same input tape, V’s write-only communication tape is P’s
read-only communication tape and vice versa.

The two machines take turns in being active, with P being active first.
P first performs some internal computation using its input tape, work
tapes, communication tape and random tape, then writes a string (for
V ) on its write-only communication tape.
The ith message of P is the entire string that P writes on its commu-
nication tape during its ith active stage.
As soon as machine P writes its message, it is deactivated and machine
V becomes active, unless the protocol has been terminated.
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Interactive protocol

Let P be an ITM. Then P(x, r, α1, α2, . . . , αn) denotes the message
sent by P on input x, random tape contents r, after receiving the
messages α1 through αn.
Let P and V be an interacting pair of ITMs. Then, [P(x),V(y)]
denotes the output distribution of V on input y, when P has input x.
The probability space is induced by the unbiased coin tosses of both
machines.
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Interactive Proof System

Definition [GMW91]
An interactive proof system for a language L is a pair of ITMs, 〈P,V〉,
such that V is expected polynomial-time and the following two conditions
hold:
(1) Completeness Condition. For every constant c > 0, if x ∈ L

Pr([P(x),V(x)] = 1) ≥ 1 − |x|−c

(2) Soundness Condition. For every constant c > 0, every interactive
Turing machine P∗, if x /∈ L

Pr ([P∗(x),V(x)] = 0) ≥ 1 − |x|−c

W denote by IP the class of languages having interactive proof systems.

Note that NP is a special case of IP (|x|−c = 0)



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction Zero-Knowledge Proof System An Epistemic Characterization of Zero-Knowledge

An Example: Graph Isomorphism
Definition
Let V(G),E(G) denote the vertex set and edge set of G respectively.
Two graph G0,G1 are isomorphic (G1 ' G2) if there exists a permutation
π : V (G0) 7→ V (G1) such that ∀x, y ∈ V (G0) , (x, y) ∈ E (G0) if and only
if (π(x), π(y)) ∈ E (G1) ”. The permutation π is called an isomorphism
(i.e. G1 = πG0 ).
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Zero-Knowledge Proof for Graph Isomorphism
Statement: Two (undirected) graphs G0 = (V,E0), G1 = (V,E1) are
isomorphic.

Prover’s witness: An isomorphism f between G0 and G1.

Protocol:
(P1) The prover picks a random permutation h from Sym(V), which
the set of permutations on V and computes H = h(G1). It stores h
and sends H to the verifier.
(V1) The verifier picks a uniformly random challenge b ∈ {0, 1} and
send b to P (Intuitively, the verifier asks the prover to show him that
H and Gb are indeed isomorphic).
(P2) If b = 0, the prover sends g = h ◦ f to the verifier. If b = 1, the
prover sends g = h to the verifier.
(V2) If the permutation h received from the prover is not an isomorph-
ism between Gb and H (i.e., H 6= g(Gb)), then the verifier stops and
rejects; otherwise, back to (P1).

If the verifier has completed n iterations of the above steps without reject-
ing, then he accepts.
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Completeness

Suppose G0 ' G1 and the verifier acts according to the protocol (denoted
“honest verifier”)

If b = 0, then verifier will ask the prover to show that H ' G0). The
prover does this by sending the verifier g := h ◦ f as a witness. Since
H := h (G1) and g (G1) = h ◦ f (G1) = h (G0), the verifier will find
that H = g (G1) , and accepts.
If b = 1, then the verifier will the prover to show that H ' h (G1) .
Recall that H := h (G1) , and that when the verifier sends b = 1 the
prover returns g = h. Certainly, h (G1) ' h (G1) , so the verifier will
accepts.
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Soundness

Suppose G0 6' G1. For any graph G∗, G∗ ' G0 and G′ ' G1 can not both
hold. If the verifier sends b = 1, then the prover sends h in which case the
verifier will accept. However, when b = 0, the prover needs to come up
with a permutation g that shows h (G0) = g (G1) , and if G0 6' G1, then
such a task is not possible, causing the verifier to reject. Since the verifier
uniformly randomly samples b from {0, 1} it follows that, for any P∗

Pr [P∗ convinces V that G0 ' G1] ≤
1
2

Thus, after performing n repetitions, for any P∗

Pr [P∗ convinces V that G0 ' G1] ≤ 2−n
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Intuition behind Zero-knowledge Property

(1) All information V gets from the interactive proof is that x ∈ L, which
means whatever is computed after interacting with P could have been
computed without interactions.

(2) V’s view (V’s random coins and messages it receives in the interact-
ive proof system) can be efficiently (polynomially) “simulated” by a
simulator SV.

(3) For every polynomial time V∗, the distribution that V∗ “sees” on all its
tapes, when interacting with P on input x ∈ L, is ”indistinguishable”
from a distribution that can be computed from x in polynomial time.
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Polynomially Indistinguishable

Definition [GMW91]
Let S ⊆ {0, 1}∗ be an infinite set of strings, Π1 = {Π1(x)}x∈S and Π2 =
{Π2(x)}x∈S be two probability ensembles (i.e., for every i ∈ {1, 2} and
x ∈ S, Πi(x) is a random variable assuming values in {0, 1}∗).
For every algorithmA, let pA

i (x) denote the probability that A outputs 1
on input x and an element chosen according to the probability distribution
Πi(x). Formally,

pA
i (x) =

∑
α

Pr(A(x, α) = 1) · Pr (Πi(x) = α)

The ensembles Π1 = {Π1(x)}x∈S and Π2 = {Π2(x)}x∈S are polynomially
indistinguishable if for every expected polynomial-time algorithm A, for
every constant c > 0 and for all sufficiently long x ∈ S∣∣pA

1 (x)− pA
2 (x)

∣∣ ≤ |x|−c
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Computational Zero-Knowledge

Definition [GMW91]
Let (P,V) be an interactive proof system for a language L. (P,V) is
computational Zero-Knowledge (for L) if for every expected polynomial-
time interactive Turing machine V∗, there exists an expected polynomial-
time machine SV∗ such that the probability ensembles {SV∗(x)}x∈L and
{[P(x),V∗(x)]}x∈L are polynomially indistinguishable.
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Zero-Knowledge Proof for Graph Isomorphism

Protocol:
(P1) The prover picks a random permutation h from Sym(V), which
the set of permutations on V and computes H = h(G1). It stores h
and sends H to the verifier.
(V1) The verifier picks a uniformly random challenge b ∈ {0, 1} and
send b to P. (Intuitively, the verifier asks the prover to show him that
H and Gb are indeed isomorphic)
(P2) If b = 0, the prover sends g = h ◦ f to the verifier. If b = 1, the
prover sends g = h to the verifier.
(V2) If the permutation h received from the prover is not an isomorph-
ism between Gb and H (i.e., H 6= g(Gb).), then the verifier stops and
rejects; otherwise, back to (V1).

If the verifier has completed n iterations of the above steps, then he ac-
cepts.
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The simulator SV∗ will do the following (Note that the simulator can
depend on V∗ and hence in particular can use the strategy V∗ in its com-
putation) :
(1) Sample uniformly σ from Sym(V) and b′ from {0, 1}, and set H :=

σ (Gb′).
(2) Send H into V∗ to get b.
(3) If b′ = b output σ, otherwise repeat from (1)
(4) Halts and accepts.

To argue that {SV∗(x)}x∈L and {[P(x),V∗(x)]}x∈L are polynomially indis-
tinguishable (actually identical), it is sufficient to show that the distribution
of the output in step (1) is indistinguishable from step (P1) in the original
protocol, since when G0 ' G1 the rest of SV∗ is identical to the original
protocol.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction Zero-Knowledge Proof System An Epistemic Characterization of Zero-Knowledge

1 Introduction

2 Zero-Knowledge Proof System
Interactive Proof System
Zero-Knowledge Property

3 An Epistemic Characterization of Zero-Knowledge
Reasoning About Systems
Characterizing Zero Knowledge Using Relation Hiding



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction Zero-Knowledge Proof System An Epistemic Characterization of Zero-Knowledge

System and Runs

Each agents starts in some initial local state; its local state then
changes over time.

The agent’s local state at time m ≥ 0 consists of the time on the
global clock, the agent’s initial information (if any), the history of
messages the agent has received from other agents and read, and the
history of coin flips used.

A global state is a tuple of local states, one for each processor. (Some-
times there is one for nature, which keeps track of information about
the system not known to any of the agents.)
A run is an infinite sequence of global states. Given a run r and a
time piont m, we refer to (r,m) as a point.

we denote the local state of processor q in r(m) by rq(m)

A system is a set of all possible runs of a particular protocol.
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For each processor q, Kq is a binary relations on System. Kq(r,m) =
{(r′,m′) : r′q(m′) = rq(m)} can be thought of as the set of points that a
considers possible at (r,m), because he has the same local state at all of
them. Since the agent’s local state at time m consists of the time on the
global clock, any point that a considers possible at (r,m) is also at time
m, so Kq(r,m) = {(r′,m) : rq(m) = r′q(m)}

We denote by P × V the system consisting of all possible executions of
(P,V) and by P × Vpp the system consisting of the union of the systems
P × V∗ for all probabilistic, polynomial-time protocols V∗
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Probability in System

When reasoning about probabilistic systems, we want to talk about
that λ is the conditional probability of φ, given q ’s local state.
Given a system R, we associate with every processor q and every point
(r,m) a probability space P(q, (r,m)) =

(
Sq,(r,m),Xq,(r,m), µq,(r,m)

)
where Sq,(r,m) is a set of points, Xq,(r,m) is a set of measurable subsets
of Sq,(r,m), and µq,(r,m) is a probability measure.
Intuitively, the set Sq,(r,m) is a subset of the points q thinks possible at
(r,m), and µq,(r,m) determines the probability with which q considers
a particular point in Sq,(r,m) to be the actual point (r,m).

The set Sq,(r,m)(φ) is then defined to consist of those points in Sq,(r,m)

at which φ holds.
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Semantics

(R, r,m) ⊨ s ∈ RL(x) if rc(0) ∈ L and rp(0) ∈ RL (rc(0)),
rc(0) is the common inputs.
RL is the “witness” relation such that x ∈ L iff there exists a y such
that (x, y) ∈ RL.

(R, r,m) ⊨ ϕ iff (r,m) ∈ π(φ) where π is an interpretation associating
with each primitive fact φ a set π(φ) of points.
(R, r,m) ⊨ Kqφ iff (R, r′,m′) ⊨ φ for all (r′,m′) ∈ Kq(r,m).

Intuitively, agent q knows φ if φ is true at all the worlds that agent q
considers possible.

(R, r,m) ⊨ at time m∗ φ iff (R, r,m∗) ⊨ φ

(R, r,m) ⊨ prλq (φ) iff where φ holds with probability at least λ over
all points where agent q has the same local state as at (r,m)

It intuitively says that processor q knows that φ must hold with prob-
ability at least λ.

We write R ⊨ φ if (R, r,m) ⊨ φ holds for all points (r,m) in R.
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A fact φ about the initial state of the system can be identified with a
binary relation Rφ on S × T × {0, 1}∗, where φ is true of (s, t) ∈ S × T
iff there exists a y such that Rφ((s, t), y) holds. y is a witness to φ being
true of (s, t).

[HPR09] identify “knowing some fact φ about the initial state i ” with
“being able to generate a witness to φ being true of (s, t) ”.

We will capture verifier’s ability to generate such witnesses for R by us-
ing an algorithm M that takes as input the verifier’s local state t and is
supposed to return a y such that R(s, t, y) holds.
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Generate a witness for some relation R

Define a function M : T M → T M; intuitively M (V∗) is the decoding
procedure for the verifier protocol V∗.
To reason about this in the language, we add a primitive proposition Mv,R
to the language, where

(R, r,m) ⊨ Mv,R if R (rp(0), rv(0),M (V∗) (rv(m)) (ρr)) holds

and V∗ is the verifier protocol in run r and ρr is the extra random tape
that is part of nature’s local state in run r
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For any constant λ, let GM,m∗,λ
v R be an abbreviation of prλv (at time m∗ Mv,R),

which intuitively says that “the verifier can generate a y satisfying R using
M with probability λ at time m∗”. Similarly, GM,m∗,λ

p R intuitively says
prover can generate a y satisfying R using M with probability λ at time
m∗.

Now we can capture the intuitively that if the verifier knows that he can,
at some future time during the interaction with the prover, generate a
witness for some relation R on the initial state with some probability, then
he knows that he can generate a witness for R at time 0, with almost the
same probability.
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Relation Hiding

Let EPPT be the set of all expected probabilistic polynomial time al-
gorithms.

A function ϵ : N → [0, 1] is negligible if for every positive integer k there
exists an n0 ∈ N such that for all n > n0, ϵ(n) < 1

nk , that is, ϵ is eventually
smaller than any inverse polynomial.

The system R is relation hiding for L if for every polynomial-time relation
R on S × T × {0, 1}∗ and function M : T M → EPPT , there exist
functions M′ : T M → EPPT , ϵ : T M× N → [0, 1] such that for every
Turing machine V∗, ϵ (V∗,n) (where n = |x|) is a negligible function, and
for every 0 ≤ λ ≤ 1 and time m∗

R ⊨ at time 0
(

s ∈ RL(x) ∧ GM,m∗,λ
v R ⇒ GM′,0,λ−ϵ

v R
)
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Characterizing ZK

Theorm [HPR09]
The interactive proof system (P,V) for L is computational zero knowledge
iff the system P × Vpp is relation hiding for L.

Proof. (Intuition)
For “if” direction, suppose that (P,V) is a computational zero knowledge
system. If V∗ is the verifier protocol in run r ∈ P × Vpp, then there is
a simulator machine SV∗ that produces verifier views that no polynomial
distinguisher D can distinguish from views during possible interactions
with the prover.
If the verifier has an algorithm M(V∗) that takes as input his view at
a final point of the interaction and generates a y satisfying the relation
R, then he can generate such a y before the interaction by running the
simulating machine SV∗ at the initial point to get a final view, and then
running M(V∗) on this view to generate y. We can therefore construct
the function M′ using M and SV∗ .
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Proof. (Intuition)
For the “only if” direction, given an arbitrary protocol V∗, we construct a
relation R such that the verifier has an algorithm for generating witnesses
for R after the interaction. Since P × Vpp is relation hiding for L, the
verifier has an algorithm for generating witnesses for R at initial points
of the interaction. We then use this generating machine to implement a
simulator SV∗ that fools any distinguisher.
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Thanks for your attention!
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