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Motivation:information dependencies

Independence friendly logic (IF logic, IF first-order logic) is an
extension of first-order logic. It was introduced by Jaakko Hintikka
and Gabriel Sandu in their article ‘Informational Independence as a
Semantical Phenomenon’ (1989).
In it, more quantifier dependencies and independencies can be
expressed than in first-order logic. Quantifier
dependencies/independencies is actually information
dependencies/independencies relation. The phenomenon is
widespread in language. For example:

Someone loves everybody.(∃x∀ylove(x , y))
Everyone loves someone.(∀x∃ylove(x , y))
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Another example from calculus

Let’s see a concrete example from calculus:
A function f:D → R is continuous, if for all x0 in the set D and for
all ε > 0, there exists δ > 0 such that for all x in D, if
| x − x0 |< δ,then | f (x)− f (x0) |< ε.
The definition of uniform continuity is obtained from that of
continuity by specifying that the quantifer ‘there exists δ’ depends
only on the quantifier ’for all ε’, not on the quantifier ’for all x0’.
Example: f (x) = 1/x
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An example from calculus

The function f is said to be continuous on D iff

∀x0∀ε∃δ∀x [|x − x0| < δ =⇒ |f (x)− f (x0)| < ε]

The function f is said to be uniformly continuous on D

∀x0∀ε∃δ/x0∀x [|x − x0| < δ =⇒ |f (x)− f (x0)| < ε]

IF first-order logic is an extension of first- order logic, involving a
specific syntactic device ‘/’ (slash, independence indicator).
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Background

For sentence (∀x)(∃y)R(x , y).The dependence of ∃y on ∀x means
that the witness of ∃y may vary with the value interpreting ∀x . This
dependence is made explicit in the language of Skolem functions,
whose use in general in the semantics requires the Axiom of Choice.
That is to say there be a function f such that R(a, f (a)) holds in M ,
for any a interpreting ∀x .
So for formula

(∀x)(∀y)(∃z/∀y)R(x , y , z)

to be true in M , there must be a function f of one argument such
that R(a, b, f (a)) holds in M . We will show the strict definition of
Skolem function later.
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What is gained with the slash notation?

(∀x)(∀y)(∃z/∀y)R(x , y , z) is true in a model M iff the first-order
sentence (∀x)(∃z)(∀y)R(x , y , z) is true.
What is gained with the slash notation?
Consider the sentence (∀x)(∃y)(∀z)(∃w/{x , y})R(x , y , z ,w).Its
truth-condition is of the following form: there are one-argument
functions f and g such that R(a, f (a), b, g(b)) holds in M.So the
sentence is true iff the following sentence (*) containing a finite
partially ordered quantifier is true:

∀x∃y
∀z∃w

R(x , y , z ,w)

Consider the quantifier dependence relations as partial order, FO can
only have one partial order chain, but IFL can have finite partial order
chains. So we can see IFL can express more dependent or
independent relations among quantifiers.
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The deepest reason for IF logic, as Hintikka sees it, is that the
relations of dependence and independece between quantifiers are the
only way of expressing relations of dependence and independece
between variables on the first-order level . Relations of quantifier
(in)dependence are semantic relations, but syntactically expressed.
More precisely, in IF logic the (in)dependence relations are
syntactically expressed by the interplay of two factors: syntactic
scope and the independence indicator ‘/’.
”The additional expressive power of independence-friendly logic was
the main reason why Hintikka advocated its superiority over
first-order logic for the foundations of mathematics.”
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Motivation: game-theoretical semantics

Motivated in part by games with imperfect information, Hintikka and
Sandu (1989) proposed consideration of semantic games where
Eloise’s choices do not depend on all (or any) of Abelard’s prior
choices. Recall first-order logic meets game theory as soon as one
considers sentences with alternating quantifiers. For example a game
between Abelard and Eloise that tests the truth of formula as below:

∀x∃y(x < y)
First Abelard picks an object m. Then Eloise observes which object
Abelard chose, and picks another object n. If m < n, we declare that
Eloise has won the game; otherwise we declare Abelard the winner. If
we restrict Eloise’s abilities of seeing objects Abelard has chosen.
This kind of game is imperfect information game. The formula can
be written as :∀x∃y/x(x < y). Hintikka used the imperfect game
theoretic interpreted the IF logic.
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1,dependence logic why friendly?
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Syntax of IF Logic

Let L be a vocabulary. L-terms are defined as for first-order logic.
The independence-friendly language IFL is generated from L
according to the following rules:

If t1 and t2 are L -terms, then (t1 = t2) ∈ IFL and
¬ (t1 = t2) ∈ IFL

If R is an n -ary relation symbol in L and t1, . . . , tn are L -terms,
then R (t1, . . . , tn) ∈ IFL and ¬R (t1, . . . , tn) ∈ IFL .

If ϕ, ϕ′ ∈ IF L, then (ϕ ∨ ϕ′) ∈ IF L and (ϕ ∧ ϕ′) ∈ IF L

If ϕ ∈ IFL, x is a variable, and W is a finite set of variables, then
(∃x/W )ϕ ∈ IFL and (∀x/W )ϕ ∈ IFL.

Tu Zeng (Department of Philosophy, PKU) Short title April, 7th, 2020 11 / 49



Syntax of IF logic

• To simplify the presentation, we only allow the negation symbol
¬ to appear in front of atomic formulas.We will see later that
this restriction is not essential; it simply allows us to assume that
Eloise is always the verifier. Formulas of the form (t1 = t2),
¬(t1 = t2),R(t1, ..., tn), or ¬R(t1, ..., tn) are called literals.

• The finite set of variables W in ∃x/W and ∀x/W is called a
slash set.
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Subformula

Let φ be an IF formula. The subformulas of φ are defined recursively:
Subf(ψ) = {ψ} (ψ literal )

Subf (ψ ◦ ψ′) = {ψ ◦ ψ′} ∪ Subf(ψ) ∪ Subf (ψ′)

Subf((Qx/W )ψ) = {(Qx/W )ψ} ∪ Subf(ψ)
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IF logic semantics

• Game-theoretic Sematics
We interpret IF formulas as specifying a game with imperfect
information.

• Skolem Semantics

• Compositional Semantics
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Defining the semantics of a logic using GTS is a two-step process.
The first step is to define the relevant imperfect semantic games.
The second step is to define the notions of ’true’ and ’false’ in terms
of the semantic games; this happens by reference to the notion of
winning strategy.
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Extensive game with perfect information

An extensive game form with perfect information has the following
components:

• N, a set of players.

• H, a set of finite sequences called histories or plays.

- If (a1, . . . , a`) ∈ H and (a1, . . . , an) ∈ H, then for all ` < m < n
we must have (a1, . . . , am) ∈ H. We call (a1, . . . , a`) an initial
segment and (a1, . . . , an) an extension of (a1, . . . , am)

- A sequence (a1, . . . , am) ∈ H is called an initial history (or
minimal play ) if it has no initial segments in H, and a terminal
history (or maximal play ) if it has no extensions in H. We
require every history to be either terminal or an initial segment
of a terminal history. The set of terminal histories is denoted Z
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Extensive game with perfect information

• P : (H − Z )→ N , the player function, which assigns a player
p ∈ N to each nonterminal history.

- We imagine that the transition from a nonterminal history h =
(a1, . . . , am) to one of its successors h_a = (a1, . . . , am, a) in H
is caused by an action. We will identify actions with the final
member of the successor.

- The player function indicates whose turn it is to move. For
every nonterminal history h = (a1, . . . , am) , the player P(h)
chooses an action a′ from the set

A(h) = {a : (a1, . . . , am, a) ∈ H}

and play proceeds from h′ = (a1, . . . , am, a
′)

An extensive game with perfect information has the above
components, plus:
• ·up : Z → R, a utility function (also called a payoff function) for

each player p ∈ N
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Background of game theory

When drawing extensive game forms, we label decision points with
the active player, and edges with actions. Filled-in nodes represent
terminal histories. Picture below shows the extensive form of a simple
two-player game. First, player I chooses between two actions a and b.
If she chooses a the game ends. If she chooses b, player II chooses
between actions c and d.
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Background of game theory

A two-player extensive game is strictly competitive if the players
have no incentive to cooperate, that is, if for all h, h′ ∈ Z

uI(h) ≥ uI (h′) iff uII (h′) ≥ uII(h)

A constant-sum game is one in which the sum of the players’
payoffs is constant, i.e., there exists a c ∈ R such that for every
terminal history h we have uI(h) + uII(h) = c . When c = 0 the game
is called zero sum. Every constant-sum game is strictly competitive,
but not vice versa.
An extensive game is win-lose if exactly one player wins each
terminal history, in which case we can replace the players’ utility
functions with

u : Z → N , the winner function

which indicates the winner of each terminal history.
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Strategy

Let Hp = P−1(p) denote the set of histories where it is player p ’s
turn to move. A strategy for player p is a choice function

σ ∈
∏
h∈Hp

A(h)

that tells the player how to move whenever it is his or her turn. A
player follows a strategy σ during a history h′ = (a1, . . . , an) if,
whenever h = (a1, . . . , am) ∈ Hp is an initial segment of h′, the
history

h ∼ σ(h) = (a1, . . . , am, σ(h))

is either h′ or an initial segment of h′
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Extensive game with imperfect information

An extensive game form with imperfect information is a tuple

(N ,H ,P , {∼p: p ∈ N} , up)

∼p is an equivalence relation on Hp with the property that
A(h) = A (h′) whenever h ∼p h′. When h ∼p h′ we say that h and h′

are indistinguishable for player p. (Without it, we can somehow know
the previous step).
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Strategy restriction of imperfect information game

A strategy σ for player p in an extensive game with imperfect
information is defined as for an extensive game with perfect
information, with the restriction that σ(h) = σ (h′) whenever h ∼p h′.

δ is a choice function, choose next step from action function A(h).

Tu Zeng (Department of Philosophy, PKU) Short title April, 7th, 2020 22 / 49



Gale-Stewart theorem?

Gale-Stewart theorem
Every two-player, win-lose, extensive game with perfect information
that has finite horizon is determined.

But this theorem fails on imperfect information games.

Neither player I nor player II has winning strategy.
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Game-theoretic semantics for IF logic

We will define the semantic game for an IF formula as an extensive
game with imperfect information by restricting the players’ access to
the current assignment. That is, a player may be forced to choose an
action without knowing the current assignment in its entirety.

• Two assignments, s and s ′, such that W ⊆ dom(s) = dom (s ′)
are equivalent modulo W (or W -equivalent), denoted s ≈W s ′

if for every variable x ∈ dom(s)−W we have s(x) = s ′(x).
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Game-theoretic semantics for IF logic

Let ϕ be an IF formula, M a suitable structure, and s an assignment
whose domain contains Free (ϕ). The semantic game G (M, s, ϕ) is a
win-lose extensive game with imperfect information:

• There are two players, Eloise (∃) and Abelard (V).
• The set of histories is H =

⋃
{Hψ : ψ ∈ Subf(ϕ)} , where Hψ is

defined recursively:
- Hϕ = {(s, ϕ)}
- if ψ is χ1 ◦ χ2, then Hχi = {h _ χi : h ∈ Hχ1◦χ2}
- if ψ is (Qx/W )χ, then
Hχ =

{
h_(x , a) : h ∈ H(Qx/W )χ, a ∈ M

}
Observe that (s, ϕ) is the unique initial history. The assignment s is
called the initial assignment. Every history h′ induces an assignment
sh′ extending and/or modifying the initial assignment:

sh′ =


s if h′ = (s, ϕ)
sh if h′ = h′ ∼ χ
sh(x/a) if h′ = h_(x , a)
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• Once play reaches a literal, the game ends:

Z =
⋃
{Hχ : χ ∈ Lit(ϕ)}

• Disjunctions and existential quantifiers are decision points for
Eloise, while conjunctions and universal quantifiers are decision
points for Abelard:

P(h) =

{
∃ if h ∈ Hχ∨χ′ or h ∈ H(∃x/W )χ

∀ if h ∈ Hχ∧χ′ or h ∈ H(∀x/W )χ

• The indistinguishability relations ∼∃ and ∼∀ are defined as
follows. Certainly ∀h, h′ ∈ H , we have A(h) = A(h′)
For all h, h′ ∈ Hχ∨χ′ : we have h ∼∃ h′ if and only if sh = sh′ .
For all h, h′ ∈ H(∃x/W )χ

h ∼∃ h′ iff sh ≈W sh′
Similarly, for all h, h′ ∈ Hχ∧χ′ we have h ∼∀ h′ only if sh = sh′
and for all h, h′ ∈ H(∀x/W )χ

h ∼∀ h′ iff sh ≈W sh′
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• Eloise wins if the literal χ reached at the end of play is satisfied
by the current assignment; Abelard wins if it is not:

u(h) =

{
∃ if M, sh � χ
∀ if M, sh 2 χ

• Let ϕ be an IF formula, M a suitable structure, and s an
assignment whose domain contains Free (ϕ).
M, s |=+

GTS ϕ iff Eloise has a winning strategy for G (M, s, ϕ).
M, s |=−GTS ϕ iff Abelard has a winning strategy for G (M, s, ϕ).

Why we define satisfaction and dissatisfaction unlike Tarski
Semantics? Because it fails of bivalence shown as next example.
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Example 1 In the game Matching Pennnies there are two players. Each
player has a coin that he or she secretly turns to heads or tails. The coins are
revealed simultaneously. The first player wins if the coins are both heads or both
tails; the second player wins if they differ. We can express the game Matching
Pennies using the IF sentence:

∀x(∃y/x)x = y

interpreted in the two-element structure M = {a, b}. Call the original sentence
φMP , and let ψ be the subformula: (∃y/{x})x = y .Then HϕMP

includes only the
initial history (∅, ϕMP) , while Hψ includes two histories: ha = (∅, ϕMP, (x , a))
and hb = (∅, ϕMP, (x , b)) . Let σ be a strategy for Eloise. since ha ∼∃ hb she
must choose the same value for y in both cases:

σ (ha) = (y , c) = σ (hb)

No matter c = a or c = b, δ can not be a winning strategy.
Now let τ be a strategy for Abelard such that τ (∅, ϕMP) = (x , c) Then τ is a
winning strategy if and only if Abelard wins both maximal plays
(∅, ϕMP, (x , c), (y , a)) and (∅, ϕMP, (x , c), (y , b)) which is again impossible. In
IFL, falsity does not ensue from non-truth. That is, bivalence fails in IFL.
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Example 2 We add one dummy quantifier ∃y to the sentence in Example 1 to
get the irregular IF sentence:

∀x∃y(∃y/x)x = y

Here is a winning strategy:

σ (ha) = (y , a) and σ (haa) = σ (hba) = (y , a)

σ (hb) = (y , b) and σ (hab) = σ (hbb) = (y , b)

Signaling
Such phenomena are common in games of imperfect information. In bridge,
skilled partners can communicate to each other about their hands using only the
cards they play. Playing according to a predetermined convention in order to
circumvent informational restrictions is called signaling.
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Skolem semantics

Definition Let ϕ be an IF L formula, let U be a finite set of variables containing
Free( ϕ ), and let

L∗ = L ∪ {fψ : ψ ∈ Subf∃(ϕ)}

be the expansion of L obtained by adding a fresh function symbol for every
existentially quantified subformula of ϕ.
The Skolem form ψ ∈ Subf(ϕ) with variables in U is defined recursively:

SkU(ψ) is ψ(ψ literal )

SkU (ψ ◦ ψ′) is SkU(ψ) ◦ SkU (ψ′)

SkU((∃x/W )ψ) is Subst
(
SkU∪{x}(ψ), x , f(∃x/W )ψ (y1, . . . , yn)

)
SkU((∀x/W )ψ) is ∀x SkU∪{x}(ψ)

where y1, . . . , yn enumerates the variables in U −W . Every FO formulas can be
skolemized.
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Example 1

Example Examine the Skolem form of the Matching Pennies
sentence ∀x(∃y/{x})x = y . Proceeding inside-out

Sk{x ,y}(x = y) is x = y

Sk{x}[(∃y/{x})x = y ] is x = c

Sk[∀x(∃y/{x})x = y ] is ∀x(x = c)

where c is a fresh constant symbol.
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Example 2

Example Now consider the Skolem form of the Matching Pennies
sentence augmented with a dummy quantifier, ∀x∃y(∃y/{x})x = y :

Sk{x ,y}(x = y) is x = y
Sk{x ,y}[(∃y/{x})x = y ] is x = g(y)

Sk{x}[∃y(∃y/{x})x = y ] is x = g(f (x))
Sk[∀x∃y(∃y/{x})x = y ] is ∀x [x = g(f (x))]

We can consider y as a signal, like in bridge poker. From Signaling
perspective, we can consider f (x) as an encoder, and g(x) as a
decoder.
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Skolem semantics

Definition Let ϕ be an IF L formula, M a suitable structure, and s
an assignment whose domain contains Free (ϕ). Define

M, s |=+
Sk ϕ iff M∗, s |= SKdom(s)(ϕ)

for some expansion M∗ of M to the vocabulary

L∗ = L ∪ {fψ : ψ ∈ Subf∃(ϕ)}
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Skolem semantics

Theorem Let ϕ be an IF L formula, M a suitable structure, and s an
assignment whose domain contains Free(ϕ) Then:

M, s |=+
GTS ϕ iff M, s |=+

Sk ϕ

Proof ⇒ Suppose Eloise has a winning strategy σ for G (M, s, ϕ). Let M∗ be
an expansion of M to the vocabulary

L∗ = L ∪ {fψ : ψ ∈ Subf∃(ϕ)}

such that for every existential subformula (∃x/W )ψ′ of ϕ and every history
h ∈ H(∃x/W )ψ′

f M
∗

(∃x/W )ψ′ (sh (y1) , . . . , sh (yn)) = a

where y1, . . . , yn enumerates dom (sh)−W , and σ(h) = (x , a). To show the
function is well defined, suppose h, h′ ∈ H(∃x/W )ψ′ are two histories such that

σ(h) = (x , a) 6= (x , a′) = σ (h′)

Then sh 6≈W sh′ which means sh (yi ) 6= sh′ (yi ) for some yi ∈ {y1, . . . , yn}
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Proof ⇒: We show by induction on φ.Suppose φ is literal. . . .

Suppose φ is ψ1 ∧ψ2.If Eloise follows σ in h ∈ Hψ1∧ψ2 , then she follows σ in both
h1 = h_ψ1 and h2 = h_ψ2. By inductive hypothesis M∗, sh1 |= Skdom(sh1 )

(ψ1)
and M∗, sh2 |= Skdom(sh2 )

(ψ2) , whence

M∗, sh |= SKdom(sh) (ψ1) ∧ Skdom(sh) (ψ2)

It follows that M∗, sh |= SKdom(sh)(ψ1 ∧ ψ2).

Suppose φ is (∃x/W )ψ′. If Eloise follows σ in h ∈ H(∃x/W )ψ′ , and σ(h) = (x , a),
then Eloise follows σ in h′ = h_(x , a). By inductive
hypothesis M∗, sh′ |= Skdom(sh′ )

(ψ′) , which is to say

M∗, sh(x/a) |= Skdom(sh(x/a))(ψ
′)

By construction f M
∗

(∃x/W )ψ′ (sh (y1) , . . . , sh (yn)) = a, where y1, . . . , yn enumerates

dom (sh)−W , so an application of the substitution lemma yields

M∗, sh |=
(
Skdom(sh(x/a)) (ψ′) , x , f(∃x/W )ψ′ (y1, . . . , yn)

)
Hence M∗, sh |= SKdom(sh)((∃x/W )ψ′) Boolean cases of ∨ and ∀ are similar.
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Proof ⇐: Conversely, suppose there is an expansion M∗ of M such that

M∗, s |= SKdom(s)(ϕ)

Let σ be the strategy for Eloise defined as follows. If h ∈ Hψ1∨ψ2 , then

σ(h) =

{
ψ1 if M∗, sh |= Skdom(sh) (ψ1)
ψ2 otherwise

If h ∈ H(∃x/W )ψ′ , then

σ(h) =
(
x , f M

∗

(∃x/W )ψ′ (sh (y1) , . . . , sh (yn))
)

where y1, . . . , yn enumerates dom (sh)−W .
We show by induction on the length of h that if Eloise follows σ in h ∈ Hψ, then
M∗, sh |= Skdom(sh)(ψ). The basis step follows from the original supposition. For
the inductive step, suppose Eloise follows σ in

h′ = (s, ϕ, a1, . . . , am, am+1)

Then she certainly follows σ in h = (s, ϕ, a1, . . . , am).
Suppose h ∈ Hψ1∧ψ2 . Then by inductive hypothesis

M∗, sh |= SKdom(sh) (ψ1 ∧ ψ2)

from which it follows that M∗, sh′ |= Skdom(sh′ )
(ψi )
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Proof ”⇐”: Suppose h ∈ Hψ1∨ψ2 and am+1 = ψi . Then by inductive
hypothesis M∗, sh |= Skdom(sh (ψ1 ∨ ψ2) , so by construction
M∗, sh′ |= Skdom(sh′ )

(ψi ).

Suppose h ∈ H(∃x/W )ψ′ and am+1 = (x , a). By inductive hypothesis
M∗, sh |= Skdom(sh)((∃x/W )ψ′), which is to say

M∗, sh |= Subst(Skdom(sh)∪{x} (ψ′) , x , f(∃x/W )ψ (y1, . . . , yn))

where y1, . . . , yn enumerates dom (sh)−W . By the substitution lemma,

M∗, sh(x/a) |= SK(sh)∪{x} (ψ′)

which implies M∗, sh′ |= SK(sh′
)(ψ′).

Finally, observe that if Eloise follows σ in a terminal history h ∈ Hχ then
M∗, sh |= Skdom(sh)(χ). It follows that M, sh |= χ, so Eloise wins h.Therefore σ is
a winning strategy for Eloise.
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Skolem function: example

An involution is a function f that satisfies f (f (x)) = x for all x in its domain. A
finite structure has an even number of elements if and only if there is a way of
pairing the elements without leaving any element out, i.e., if there exists an
involution without a fixed point. Let φeven be the IF sentence:

∀x∀y(∃u/{y})(∃v/{x , u})
[(x = y → u = v) ∧ (u = y → v = x) ∧ u 6= x ]

The Skolem form of φeven is

∀x∀y [(x = y → f (x) = g(y)) ∧ (f (x) = y → g(y) = x) ∧ f (x) 6= x ]

Since f and g denote the same function, we can simplify Sk(φeven) to

∀x [f (f (x)) = x ∧ f (x) 6= x ],

which asserts that f is an involution without a fixed point. Therefore Sk(φeven) is
satisfiable by an expansion of a finite structure if and only if the universe of the
structure has an even number of elements.
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Falsity and Kreisel counterexamples

Skolem functions encode Eloise’s strategies for the relevant semantic
game. In the next section, we show how to use Kreisel’s
counterexamples to encode Abelard’s strategies.
Definition Let ϕ be an IFL formula, and let

L∗ = L ∪ {fψ : ψ ∈ Subf∀(ϕ)}

be the expansion of L obtained by adding a fresh function symbol for
every universally quantified subformula of ϕ. The Kreisel form (or
Kreiselization of ψ ∈ Subf(ϕ) with variables in U is defined
recursively:
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Falsity and Kreisel counterexamples

KrU(ψ) is ¬ψ (ψ literal )

KrU (ψ ∨ ψ′) is KrU(ψ) ∧KrU (ψ′)

KrU (ψ ∧ ψ′) is KrU(ψ) ∨KrU (ψ′)

KrU((∃x/W )ψ) is ∀x KrU∪{x}(ψ)

KrU((∀x/W )ψ) is Subst
(
KrU∪{x}(ψ), x , f(∀x/W )ψ (y1, . . . , yn)

)
where y1, . . . yn enumerates the variables in U −W .An interpretation
of f (∀x/W )ψ is called a Kreisel counterexample. We abbreviate
Kr∅(ψ) by Kr(ψ).
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Falsity and Kreisel counterexamples

Definition Let φ be an IFL formula, M a suitable structure, and s
an assignment whose domain contains Free(φ). Define

M , s |=−Sk φ iff M∗, s |= Krdom(s)(φ)

for some expansion M∗ of M to the vocabulary

L∗ = L ∪ {fψ : ψ ∈ Subf∀(φ)}

Theorem Let φ be an IFL formula, M a suitable structure, and s an
assignment whose domain contains Free(φ). Then

M , s |=−GTS φ iff M , s |=−Sk φ

Proof The proof is dual of the previous proof.
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Compactness

Compactness An IF theory Γ is satisfiable if every finite subtheory of
Γ is satisfiable.

Proof Observe that an IF theory Γ is satisfiable if and only if

Γ∗ = {Sk(φ) : φ ∈ Γ}

is satifiable. Hence, if every finite subtheory δ ⊆ Γ is satisfiable, then
so is every finite subtheory Γ∗ ⊆ Γ∗. By the compactness theorem for
first-order logic, Γ∗ must be satisfiable, which implies Γ is satisfiable
too.
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Compactness theorem?

Definition When Γ ∪ {φ} is an IF theory, Γ truth entail φ, denoted
Γ |=+ φ, if:

M |=+ Γ implies M |=+ φ

Γ false entail φ, denoted Γ |=− φ, if:

M |=− Γ implies M |=− φ

An alternative formulation of the compactness theorem for first-order
logic is the following: Every first-order theory Γ ∪ {ϕ} has the
property that Γ � ϕ if and only if there exists a finite ∆ ⊆ Γ such
that ∆ |= ϕ In contrast, when Γ is an IF theory it is possible to have
Γ �+ ϕ even if ∆ 2+ ϕ for every finite ∆ ⊆ Γ. We will show it from
next example.
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An example of Compactness theorem fails

Example Let ϕn denote the IF sentence

∃x1 . . . ∃xn

( ∧
1≤i<j≤n

xi 6= xj

)

which asserts that the universe has at least n elements. Then

{ϕn : n ≥ 2} |=+ ϕ∞

where ϕ∞ is the IF sentence that asserts the universe is infinite (the
previous example). However, there is no finite subtheory
∆ ⊆ {ϕn : n ≥ 2} such that ∆ |=+ ϕ∞
It follows immediately from the previous example that IF cannot have
a complete proof system in which proofs have finite length.
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Completeness Theorem fails

Theorem There is no sound and semantically complete proof
system for IF logic. That is, there is no proof system FIF such that
for every IF theory Γ ∪ {ϕ}

Γ |=+ ϕ iff Γ `IF ϕ

Proof Suppose for the sake of a contradiction that `IF is such a
proof system. Then by Example 5.52 we must have

{ϕn : n ≥ 2} `IF ϕ∞

since a proof of ϕ∞ from {ϕn : n ≥ 2} can use at most finitely many
premises, there must be a finite subtheory ∆ ⊆ {ϕn : n ≥ 2} such
that ∆ `IF ϕ∞, which would imply ∆ |=+ ϕ∞
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Weak completeness fails

A proof system ` for a logical language is weakly complete if for
every sentence ϕ in the language we have ` ϕ if and only if |= ϕ. In
other words, every valid sentence is provable. One naturally wonders
whether IF logic might have a proof system that is complete in this
weaker sense.

Theorem There is no proof system t IF such that for every IF
sentence ϕ we have `IF ϕ if and only if |=+ ϕ

Proof Observe that for every IF sentence ϕ we have |=+ ϕ ∨ ϕ∞ if
and only if ϕ is true in every (suitable) finite model. Thus, if there
were such a proof system, the set of first-order sentences that are
true in every (suitable) finite model would be recursively enumerable,
contrary to Trakhtenbrot’s theorem,according to which the set of FO
sentences true in all finite models is not recursively enumerable.
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Löwenheim-Skolem theorem

The Löwenheim-Skolem theorem states that if a countable first-order
theory has an infinite model, then it has models of every infinite
cardinality. Like the compactness theorem, we can extend the
Löwenheim-Skolem theorem to IF logic.

Theorem (Löwenheim-Skolem) Let Γ be a countable IF theory. If
there is an infinite structure M such that M |=+ Γ, then for all infinite
cardinalities κ there is a structure M′ of size κ such that M′ |=+ Γ.

Proof Suppose M is an infinite structure such that M �+ Γ and that
κ is an infinite cardinal. Then there is an expansion M∗ of M such
that M∗ |= {Sk(ϕ) : ϕ ∈ Γ}. By the Löwenheim-Skolem theorem for
first- order logic, {Sk(ϕ) : ϕ ∈ Γ} has a model of cardinality κ, the
reduct of which to the vocabulary of Γ is a structure M′ of size κ
such that M′ |=+ Γ
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