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Why are logic puzzles relevant for research in logic?
What is the origin of these puzzles?



Hardy & Littlewood

— Hardy and Littlewood are 20th century British mathematicians.
— Hardy wrote A Mathematician’s Apology for a general audience.
— Littlewood wrote A Mathematician’s Miscellany.
— Hardy starts with a non-trivial mathematical problem:

there are infinitely many prime numbers (classical / Euclid)
— Littlewood starts with the Muddy Children problem (modern).

Three ladies, A, B, C in a railway carriage all have dirty faces and
are all laughing. It suddenly flashes on A: why doesn’t B realize C
is laughing at her? — Heavens, I must be laughable. (...)



Muddy Children



Muddy Children

A group of children has been playing outside and are called back
into the house by their father. The children gather round him. As
one may imagine, some of them have become dirty from the play
and in particular: they may have mud on their forehead. Children
can only see whether other children are muddy, and not if there is
any mud on their own forehead. All this is commonly known, and
the children are, obviously, perfect logicians. Father now says: “At
least one of you has mud on his or her forehead.” And then: “Will
those who know whether they are muddy step forward.” If nobody
steps forward, father keeps repeating the request. What happens?
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On the origin of Muddy Children

I Kraitchik, Mathematical Recreations, 1942

I Littlewood, A Mathematician’s Miscellany, 1953

I van Tilburg, Doe wel en zie niet om, Katholieke Illustratie,
1956 (Do well and don’t look back, Catholic Illustrated J)

I Moses, Dolev and Halpern, Cheating husbands and other
stories: a case study in knowledge, action, and
communication, Distributed Computing, 1986

Similar riddles appeared in the 1940s in:

I Penguin Problems Book, 1940; 2nd Penguin Problems B, 1944

and many variations since (more in this talk!), as recent as 2015:

I Cheryl’s Birthday (Singapore Math Olympiad, 10 April 2015)
https://en.wikipedia.org/wiki/Cheryl’s Birthday
https://www.facebook.com/barteld.kooi.7/videos/1722881727938456/

but also MUCH BEFORE the 1940s:

I . . . . . . . . .
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On the origin of Muddy Children

German translation of Rabelais’ Gargantua and Pantagruel:
Gottlob Regis, Meister Franz Rabelais der Arzeney Doctoren
Gargantua und Pantagruel, usw., Barth, Leipzig, 1832.

Ungelacht pfetz ich dich. Gesellschaftsspiel. Jeder zwickt seinen
rechten Nachbar an Kinn oder Nase; wenn er lacht, giebt er ein
Pfand. Zwei von der Gesellschaft sind nämlich im Complot und
haben einen verkohlten Korkstöpsel, woran sie sich die Finger, und
mithin denen, die sie zupfen, die Gesichter schwärzen. Diese
werden nun um so lächerlicher, weil jeder glaubt, man lache über
den anderen.

I pinch you without laughing. Parlour game. Everybody pinches his
right neighbour into chin or nose; if one laughs, one must give a
pledge. Two in the round have secretly blackened their fingers on a
charred piece of cork, and hence will blacken the faces of their
neighbours. These neighbours make a fool of themselves, since
they both think that everybody is laughing about the other one.

Born, Hurkens, Woeginger, The Freudenthal problem and its
ramifications (Part III), Bulletin of the EATCS, 2008.
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Consecutive numbers

Anne and Bill are each going to be told a natural number. Their
numbers will be one apart. The numbers are now being whispered
in their respective ears. They are aware of this scenario. Suppose
Anne is told 2 and Bill is told 3.
The following truthful conversation between Anne and Bill now
takes place:

I Anne: “I do not know your number.”

I Bill: “I do not know your number.”

I Anne: “I know your number.”

I Bill: “I know your number.”

Explain why is this possible.

I Consecutive Numbers is also known as the Conway Paradox.

I Peter van Emde Boas, Jeroen Groenendijk, Martin Stokhof,
The Conway Paradox: its solution in an epistemic framework.
1984.



Consecutive Numbers

Suppose Anne has been told 2 and Bill has been told 3.
How we represent the model of uncertainty:

01 21 23 43 . . .b a b a

I Anne: “I do not know your number.”

01 21 23 43 . . .a b a

I Bill: “I do not know your number.”

01 21 23 43 . . .b a

I Anne: “I know your number.”

01 21 23 43 . . .

I Bill: “I know your number.”

01 21 23 43 . . .
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Sum and product

A says to S and P: I have chosen two integers x , y such that
1 < x < y and x + y ≤ 100. In a moment, I will inform S only of
s = x + y , and P only of p = xy . These announcements remain
private. You are required to determine the pair (x , y).
He acts as said. The following conversation now takes place:

1. P says: “I do not know it.”

2. S says: “I knew you didn’t.”

3. P says: “I now know it.”

4. S says: “I now also know it.”

Determine the pair (x , y).

— If the numbers were 2 and 3, then P deduces the pair from
their product: 6 = 2 · 3 and 6 = 1 · 6, but the numbers are larger
than 1 (two integers x , y such that 1 < x < y and x + y ≤ 100).
— If the numbers were prime, then P deduces the pair, because of
the unique factorization of the product.
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Sum and product — history

Originally stated, in Dutch, by Hans Freudenthal.
Nieuw Archief voor Wiskunde 3(17):152, 1969.
Became popular in AI by way of John McCarthy, Martin Gardner.

— Jan Plaza, Logics of Public Communications, 1989.
— Born, Hurkens and Woeginger, The Freudenthal Problem and
its Ramifications (Parts I/II/III), Bulletin of the EATCS, 2006/7/8.
— van Ditmarsch, Ruan, Verbrugge, Sum and Product in Dynamic
Epistemic Logic. Journal of Logic and Computation, 2007.
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Russian Cards

From a pack of seven known cards 0, 1, 2, 3, 4, 5, 6 Alice and Bob
each draw three cards and Cath gets the remaining card. How can
Alice and Bob openly inform each other about their cards, without
Cath learning of any of their cards who holds it?

I Presented at Moscow Mathematics Olympiad 2000.

I Thomas Kirkman, On a problem in combinations, Cambridge
and Dublin Mathematical Journal 2: 191-204, 1847.

I David Fernandez and Valentin Goranko, Secure aggregation of
distributed information, Discrete Applied Mathematics, 2015.



Monty Hall



Playing with probabilities — What is the best question?

Anthony and Barbara play the following game. First,
Barbara selects a card from an ordinary set of 52 playing
cards. Then, Anthony guesses which card Barbara
selected. If he guesses correctly, Barbara pays him 100
euros. If he guesses incorrectly, Anthony pays Barbara 4
euros. To make the game a bit more interesting, Anthony
is allowed to ask a yes/no question before he guesses,
and Barbara has to answer his question truthfully. Which
question is better: “Do you have a red card?” or “Do
you have the Queen of hearts?”?

Red card? Yes/No 1
2 ·

1
26 + 1

2 ·
1
26 = 1

26
Queen of Hearts? Yes/No 1

52 ·
1
1 + 51

52 ·
1
51 = 1

26

What the question is does not matter!
Only the number of answers matter.
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Playing with probabilities — Monty Hall problem

Marilyn vos Savant 1975 — 1990

Suppose you’re on a game show, and you’re given the choice of
three doors. Behind one door is a car, behind the others, goats.
You pick a door, say #1, and the host, who knows what’s behind
the doors, opens another door, say #3, which has a goat. He says
to you, “Do you want to pick door #2?” Is it to your advantage to
switch your choice of doors?

Craig F. Whitaker
Columbia, Maryland

Yes, it is...

However, some people find it hard to accept the correct solution.
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Monty Hall problem
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the doors, opens another door, say #3, which has a goat. He says
to you, “Do you want to pick door #2?” Is it to your advantage to
switch your choice of doors?

I Probability 1/3 that the car is behind door #1.
I Probability 1/3 that the car is behind door #2.
I Do not switch! Your probability increased to 1/2!
I The host opening a door does not change prior probabilities!

I Probability 1/3 that the car is behind door #1. If you do not
switch, you win the car. If you switch, you lose the car.

I Probability 2/3 that the car is not behind door #1. If you do
not switch, you lose the car. If you switch, you win the car.

I Not switch: 1
3 · 1 + 2

3 · 0 = 1
3 . Switch: 1

3 · 0 + 2
3 · 1 = 2

3 . Switch!
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Responses to the solution of the Monty Hall problem

You blew it, and you blew it big! Since you seem to have
difficulty grasping the basic principle at work here, I’ll
explain. After the host reveals a goat, you now have a
one-in-two chance of being correct. Whether you change
your selection or not, the odds are the same. There is
enough mathematical illiteracy in this country, and we
don’t need the world’s highest IQ propagating more.
Shame!

Scott Smith, Ph.D.
University of Florida

You’re in error, but Albert Einstein earned a dearer place
in the hearts of people after he admitted his errors.

Frank Rose, Ph.D.
University of Michigan
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Responses to the solution of the Monty Hall problem

You are utterly incorrect about the game show question,
and I hope this controversy will call some public attention
to the serious national crisis in mathematical education.
If you can admit your error, you will have contributed
constructively towards the solution of a deplorable
situation. How many irate mathematicians are needed to
get you to change your mind?

E. Ray Bobo, Ph.D.
Georgetown University

You made a mistake, but look at the positive side. If all
those Ph.D.s were wrong, the country would be in some
very serious trouble.

Everett Harman, Ph.D.
U.S. Army Research Institute
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One hundred prisoners and a light bulb



One hundred prisoners and a light bulb

A group of 100 prisoners, all together in the prison dining area, are
told that they will be all put in isolation cells and then will be
interrogated one by one in a room containing a light with an
on/off switch. The prisoners may communicate with one another
by toggling the light-switch (and that is the only way in which they
can communicate). The light is initially switched off. There is no
fixed order of interrogation, or interval between interrogations, and
at any stage the same prisoner will later be interrogated again.
When interrogated, a prisoner can either do nothing, or toggle the
light-switch, or announce that all prisoners have been interrogated.
If that announcement is true, the prisoners will (all) be set free,
but if it is false, they will all be executed. While still in the dining
room, and before the prisoners go to their isolation cells (forever),
can the prisoners agree on a protocol that will set them free?



100 prisoners — not a solution

Let there be one prisoner:

Protocol: If a prisoner enters the interrogation room, he
announces that all prisoners have been interrogated.

Let there be two prisoners:

Protocol: If a prisoner enters the interrogation room and the light
is off, he turns it on; if a prisoner enters the interrogation room
and the light is on, and he has not turned on the light at a
previous interrogation, he announces that all prisoners have been
interrogated.

Let there be three prisoners:

Protocol: . . .



100 prisoners — solution Protocol for n ≥ 3 prisoners

The n prisoners appoint one amongst them as the counter. The
non-counting prisoners are the followers. The followers follow the
following protocol: the first time they enter the room when the
light is off, they turn it on; on all other occasions, they do nothing.
The counter follows a different protocol. When the light is on
when he enters the interrogation room, he turns it off. When he
turns off the light for the (n − 1)st time, he announces that
everybody has been interrogated.

Let us picture a number of executions of this protocol for n = 3.
The upper index: state of the light. The lower index: the number
of times the light has been turned off. Anne is the counter.

— 0Bob1Anne01Caro1Anne02
— 0Anne0Bob1Caro1Anne01Bob0Anne01Caro1Caro1Bob1Bob1Anne02
— 0Bob1Anne01Bob0Caro1Bob1Anne02

If the scheduling is fair, then the protocol will terminate.
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Followers can also count

A follower may know before the counter that everybody has been
interrogated. E.g., follower Bob may know it before counter Anne:

— 0Bob1Anne01Bob0Caro1Bob1Anne02



When will you get out of prison?

Assume a single interrogation per day takes place.
When can the prisoners expect to be set free from prison?

non-counter / counter / another non-counter / counter / etc.

99
100 / 1

100 / 98
100 / 1

100 / etc.

100
99 / 100

1 / 100
98 / 100

1 / etc.

Summation:

99∑
i=1

(
100

i
+

100

1
) = 99·100+100·

99∑
i=1

1

i
= 9, 900+518 days ≈ 28.5 years

This can be reduced to around 9 years. The minimum is unknown.

Relation to Coupon Collector’s Problem (De Moivre):
n ·

∑n
i=1

1
i = n · Hn where Hn is the harmonic number.
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Gossip



Gossip: agents exchanging secrets

Six friends each know a secret. They can call each other.
In each call they exchange all the secrets they know. How
many calls are needed for everyone to know all secrets?

First consider four friends a, b, c, d who hold secrets A,B,C ,D.
Four calls ab; cd ; ac; bd distribute all secrets.

A.B.C .D
ab→ AB.AB.C .D

cd→ AB.AB.CD.CD
ac→

ABCD.AB.ABCD.CD
bd→ ABCD.ABCD.ABCD.ABCD

Now consider friends a, b, c , d , e, f with secrets A,B,C ,D,E ,F .
Eight calls ae; af ; ab; cd ; ac; bd ; ae; af distribute all secrets.

[Peer-to-peer communication; epidemiology; semantic web; . . . ]

cd : How does c know that she should call d , and not a or b?
We need knowledge-based gossip protocols.
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Four calls ab; cd ; ac; bd distribute all secrets.

A.B.C .D
ab→ AB.AB.C .D

cd→ AB.AB.CD.CD
ac→

ABCD.AB.ABCD.CD
bd→ ABCD.ABCD.ABCD.ABCD

Now consider friends a, b, c , d , e, f with secrets A,B,C ,D,E ,F .
Eight calls ae; af ; ab; cd ; ac; bd ; ae; af distribute all secrets.
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One Hundred Prisoners and a Light Bulb: the book
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More information:
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