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Introduction

When analyzing a system in terms of knowledge, not only is the
current state of knowledge of the agents in the system relevant,
but also how that state of knowledge changes over time. A
formal propositional logic of knowledge and time was first proposed
by Sato[5].

In [3] Halpern logics for knowledge and time were categorized
along two major dimensions: the language used and the
assumptions made on the underlying distributed system. The
properties of knowledge in a system turn out to depend in subtle
ways on these assumptions.
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Introduction

The assumptions considered in [3] concern whether agents have
unique initial states(uis), operate synchronously(sync) or
asynchronously, have perfect recall(pr), and whether they
satisfy a condition called no learning(nl). There are 24 = 16
possible combinations of these assumptions on the underlying
system. Together with 6 choices of language, this gives us 96
logics in all.

Of these 96 logics, 48 involve linear time and 48 involve branching
time. We focus here on the linear time logics, and provide
axiomatic characterizations of all the linear time logics for which
an axiomatization is possible at all.
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Language

.
Definition (Language)
..

......

The set of formulas CKLm is defined inductively as follows:

φ ::= p | φ ∧ ψ | ¬φ | true | Kiφ | Eφ | Cφ | ⃝φ | φUψ

where p ∈ Var.We use the abbreviation true = ¬(p ∧ ¬p),
Liφ := ¬Ki¬φ, 3φ = true Uφ, 2φ = ¬3¬φ.

.
Remark
..

......

We take CKLm to be the language for m agents with all the modal
operators for knowledge and linear time discussed above;KLm is
the restricted version without the common knowledge operator.



Introduction Language and Semantics Axiom system Enriched system Completeness Discussion

System

.
Definition (System)
..

......

A system for m agents consists of a set R of runs, where each run
r ∈ R is a function from N to Lm+1, where L is some set of local
states. Formally, we could view a system as a tuple (R, L,m),
making the L and m explicit.

.
Remark
..

......

There is a local state for each agent, together with a local state for
the environment;intuitively, the environment keeps track of all the
relevant features of the system not described by the agents’ local
states, such as messages in transit but not yet delivered.Thus, r(n)
has the form ⟨le , l1, ..., lm⟩, where le is the state of the
environment, and li is the local state of agent i , for i = 1, ...,m.
Such a tuple is called a global state.



Introduction Language and Semantics Axiom system Enriched system Completeness Discussion

Interpreted System

.
Definition (Interpreted System)
..

......

An interpreted system I for m agents is a tuple (R, π) where R is
a system for m agents, and π maps every point (r , n) ∈ R× N to
a truth assignment π(r , n) to the primitive propositions (so that
π(r , n)(p) ∈ {true,false} for each primitive proposition p).

We now give semantics to CKLm and KLm. Given an interpreted
system I = (R, π), we write (I, r , n) � φ if the formula φ is true
at (or satisfied by) the point (r , n) of interpreted system I. We
define � inductively for formulas of CKLm.
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Semantics

In order to give the semantics for formulas of the form Kiφ, we
need to introduce one new notion. If r(n) = ⟨le , l1, ..., lm⟩,
r ′(n′) = ⟨l ′e , l ′1, ..., l ′m⟩, and li = l ′i , then we say that r(n) and r ′(n′)
are indistinguishable to agent i and write (r , n) ∼i (r

′, n′).

∼i is an equivalence relation on global states. Kiφ is defined to be
true at (r , n) exactly if φ is true at all the points whose associated
global state is indistinguishable to i from that of (r , n).
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Semantics

We proceed as follows:

(I, r , n) � p for a primitive proposition p iff π(r , n)(p) = true

(I, r , n) � φ ∧ ψ iff (I, r , n) � φ and (I, r , n) � ψ
(I, r , n) � ¬φ iff (I, r , n) ̸� φ
(I, r , n) � Kiφ iff (I, r ′, n′) � φ for all (r ′, n′) such that
(r , n) ∼i (r

′, n′)

(I, r , n) � Eφ iff (I, r , n) � Kiφ for i = 1, ...,m

(I, r , n) � Cφ iff (I, r , n) � E kφ for k = 1, 2, ... (where
E 1φ = Eφ and E k+1φ = EE kφ)
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Semantics

(I, r , n) � ⃝φ iff (I, r , n + 1) � φ
(I, r , n) � φUψ iff there is some n′ ≥ n such that
(I, r , n′) � ψ, and for all n′′ with n ≤ n′′ < n′, we have
(I, r , n′′) � φ.

.
Remark
..

......

Since Liφ = ¬Ki¬φ, we have (I, r , n) � Liφ iff there exists (r ′, n′)
such that (r , n) ∼i (r

′, n′) such that (I, r ′, n′) � φ.
Since 3ψ = true Uψ, we have (I, r , n) � 3ψ iff there is some
n′ ≥ n such that (I, r , n′) � ψ.
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Semantics

There is a graphical interpretation of the semantics of C which we
shall find useful in the sequel. Fix an interpreted system I. A
point (r ′, n′) in I is reachable from a point (r , n) if there exist
points (r0, n0), ..., (rk , nk) such that (r , n) = (r0, n0),
(r ′, n′) = (rk , nk), and for all j = 0, ..., k − 1 there exists i such
that (rj , nj) ∼i (rj+1, nj+1). Then we have

.
Lemma (2.1)
..

......

(I, r , n) � Cφ iff (I, r ′, n′) � φ for all points (r ′, n′) reachable from
(r , n).
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Semantics

.
Lemma (2.1)
..

......

(I, r , n) � Cφ iff (I, r ′, n′) � φ for all points (r ′, n′) reachable from
(r , n).

.
Proof.
..

......

(⇒) Assume (I, r , n) � Cφ, since (r ′, n′) is reachable from (r , n),
then there exists points (r0, n0), ..., (rk , nk) such that
(r , n) = (r0, n0), (r

′, n′) = (rk , nk), and for all j = 0, ..., k − 1 there
exists ij such that (rj , nj) ∼ij (rj+1, nj+1).By (I, r , n) � Cφ we

have (I, r0, n0) � E kφ. Hence (I, r0, n0) � Ki0E
k−1φ.By

(r0, n0) ∼i0 (r1, n1), we have (I, r1, n1) � E k−1φ.Then
(I, r1, n1) � Ki1E

k−2φ. By (r1, n1) ∼i1 (r2, n2), we have
(I, r2, n2) � E k−2φ.Similarly by iteration, we can get
(I, r3, n3) � E k−3φ,...,(I, rk , nk) � φ. That is (I, r ′, n′) � φ.
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Semantics

.
Lemma (2.1)
..

......

(I, r , n) � Cφ iff (I, r ′, n′) � φ for all points (r ′, n′) reachable from
(r , n).

.
Proof.
..

......

(⇐) Assume (I, r ′, n′) � φ for all points (r ′, n′) reachable from
(r , n) but (I, r , n) ̸� Cφ. Then there exists k such that
(I, r , n) ̸� E kφ.So there exists some ik such that
(I, r , n) ̸� Kik (E

k−1φ). Then there exists some point (r1, n1) such
that (r , n) ∼ik (r1, n1) but (I, r1, n1) ̸� E k−1φ.So there exists some
ik−1 such that (I, r1, n1) ̸� Kik−1

(E k−2φ). Then there exists some
point (r2, n2) such that (r1, n1) ∼ik−1

(r2, n2) but
(I, r2, n2) ̸� E k−2φ.Similarly by iteration, we can get a chain of
points (r1, n1), ..., (rk , nk) such that (rj , nj) ∼ik−j

(rj+1, nj+1) and
(I, rk , nk) ̸� φ. A contradiction to the assumption.
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Semantics

As usual, we define a formula φ to be valid with respect to a class
C of interpreted systems iff (I, r , n) � φ for all interpreted systems
I ∈ C and points (r , n) ∈ I. A formula φ is satisfiable with respect
to C iff for some I ∈ C and some point (r , n) ∈ I, we have
(I, r , n) � φ.
We now turn our attention to formally defining the classes of
interpreted systems of interest.
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Perfect recall

Define agent i’s local-state sequence at the point (r , n) to be the
sequence l0, ..., lk of states that agent i takes on in run r up to and
including time n, with consecutive repetitions omitted.
.
Example
..

......

If from time 0 through 4 in run r agent i goes through the
sequence l , l , l ′, l , l of states, its history at (r , 4) is just l , l ′, l .

.
Definition (pr)
..

......

We say that agent i has perfect recall (alternatively, agent i does
not forget) in system R if at all points (r , n) and (r ′, n′) in R, if
(r , n) ∼i (r

′, n′), then r has the same local-state sequence at both
(r , n) and (r ′, n′).
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Perfect recall

.
Definition (∼-concordant)
..

......

Let S = (s0, s1, s2, ...) and T = (t0, t1, t2, ...) be two (finite or
infinite) sequences and let ∼ be a relation on the elements of S
and T . Then we say that S and T are ∼-concordant if there is
some k (k may be ∞) and nonempty consecutive intervals
S1, ..., Sk of S and T1, ...,Tk of T such that for all s ∈ Sj and
t ∈ Tj , we have s ∼ t for j = 1, ..., k.
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Perfect recall

.
Lemma (2.2)
..

......

The following are equivalent.

(a) Agent i has perfect recall in system R.

(b) For all points (r , n) ∼i (r
′, n′) in R, ((r , 0), ..., (r , n)) is

∼i -concordant with ((r ′, 0), ..., (r ′, n′)).

(c) For all points (r , n) ∼i (r
′, n′) in R, if n > 0, then either

(r , n − 1) ∼i (r
′, n′) or there exists a number l ′ < n′ such that

(r , n − 1) ∼i (r
′, l ′) and for all k with l ′ < k ′ ≤ n′ we have

(r , n) ∼i (r
′, k ′).

(d) For all points (r , n) ∼i (r
′, n′) in R, if k ≤ n, then there exists

k ′ ≤ n′ such that (r , k) ∼i (r
′, k ′).
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Perfect recall

.
Proof.
..

......

(a) ⇒ (b) For all points (r , n) ∼i (r
′, n′) in R, since i has perfect

recall in system R, then i has the same local-state sequence at
both (r , n) and (r ′, n′), noted as l1, l2, ..., lk .Let
S = ((r , 0), ..., (r , n)) and T = ((r ′, 0), ..., (r ′, n′)). Since their
local-state sequence is l1, l2, ..., lk ,there exists k and j1, j2, ..., jk and
j ′1, j

′
2, ..., j

′
k such that for all s ∈ ((r , 0), ..., (r , j1)) and

t ∈ ((r ′, 0), ..., (r ′, j ′1)), the local state of i is l1.For all
s ∈ ((r , j1 + 1), ..., (r , j2)) and t ∈ ((r ′, j ′1 + 1), ..., (r ′, j ′2)), the local
state of i is l2.Hence ((r , 0), ..., (r , n)) is ∼i -concordant with
((r ′, 0), ..., (r ′, n)).
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Perfect recall

.
Proof.
..

......

(b) ⇒ (c) Assume ((r , 0), ..., (r , n)) is ∼i -concordant with
((r ′, 0), ..., (r ′, n)), then there is some k and nonempty consecutive
intervals S1, ...,Sk of S and T1, ...,Tk of T such that for all s ∈ Sj
and t ∈ Tj , we have s ∼ t for j = 1, ..., k.Obviously (r , n) ∈ Sk
and (r ′, n′) ∈ Tk .If (r , n − 1) ∈ Sk , then we have
(r , n − 1) ∼i (r

′, n′). Otherwise, Sk = ((r , n)) and
(r , n − 1) ∈ Sk−1.Assume Tk = ((r ′, l ′ + 1), ..., (r ′, n′)). Then
(r ′, l ′) ∈ Tk−1. So (r , n − 1) ∼i (r

′, l ′). And for all k with
l ′ < k ′ ≤ n′ we have (r , n) ∼i (r

′, k ′).
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Perfect recall

.
Proof.
..

......

(c) ⇒ (d) Assume (r , n) ∼i (r
′, n′) in R and k ≤ n, then by (c)

we have either (r , n− 1) ∼i (r
′, n′) or there exists a number l ′ < n′

such that (r , n − 1) ∼i (r
′, l ′).Started from (r , n − 1) ∼i (r

′, n′) or
(r , n − 1) ∼i (r

′, l) and using condition (c) for n − k − 1 times, we
can get (r , k) ∼i (r

′, n′) or (r , k) ∼i (r
′, l ′) for some l ′ < n′.

(d) ⇒ (a) We prove by induction on n + n′. Assume
(r , n) ∼i (r

′, n′). If n + n′ = 0, by (r , 0) ∼i (r
′, 0), then i has the

same local-state sequence at (r , n) and (r ′, n′). Assume if
(r , k) ∼i (r

′, k ′), then i has the same local-state sequence at (r , k)
and (r ′, k ′) for k + k ′ < n + n′. We aim to prove i has the same
local-state sequence at (r , n) and (r ′, n′).
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Perfect recall

.
Proof.
..

......

First if (r , n) ∼i (r , n − 1), then (r , n − 1) ∼i (r
′, n′). By induction

hypothesis we have that i has the same local-state sequence at
both (r , n − 1) and (r ′, n′). By (r , n) ∼i (r , n − 1), then i has the
same local-state sequence at (r , n) and (r ′, n′). Similarly for the
case of (r , n) ∼i (r

′, n′ − 1). Consider (r , n − 1), by (d) we have
there exists k ′ < n′ such that (r , n − 1) ∼i (r

′, k ′)(∗). Consider
(r ′, n′ − 1), by (d) we have there exists k < n such that
(r , k) ∼i (r

′, n′ − 1). Then i has the same local-state sequence at
both (r , k) and (r ′, n′ − 1). Combined with (∗) we have
(r , n − 1) ∼i (r

′, n′ − 1). By induction hypothesis we have i has
the same local-state sequence at both (r , n − 1) and (r ′, n′ − 1).
Since (r , n) ∼i (r

′, n′), so i has the same local-state sequence at
both (r , n) and (r ′, n′).
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No learning

We define an agents future local-state sequence at (r , n) to be
the sequence of local states l0, l1, ... that the agent takes on in run
r , starting at (r , n), with consecutive repetitions omitted. We say
agent i does not learn in system R if at all points (r , n) and
(r ′, n′) in R, if (r , n) ∼i (r

′, n′), then r has the same future
local-state sequence at both (r , n) and (r ′, n′).
.
Lemma (2.3)
..

......

The following are equivalent.

(a) Agent i does not learn in system R.

(b) For all points (r , n) ∼i (r
′, n′) in R, ((r , n), (r , n + 1), ...) is

∼i -concordant with ((r ′, n′), (r , n′ + 1), ...).

(c) For all points (r , n) ∼i (r
′, n′) in R, if n > 0, then either

(r , n + 1) ∼i (r
′, n′) or there exists a number l > n such that

(r , n + 1) ∼i (r
′, l) and for all k with l > k ≥ n we have

(r , n) ∼i (r
′, k).
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Sync,uis

.
Definition (sync)
..

......

We say that a system R is synchronous if for all agents i and all
points (r , n) and (r ′, n′), if (r , n) ∼i (r

′, n′) then n = n′.

Observe that in a synchronous system where (r , n) ∼i (r
′, n′), an

easy induction on n shows that if i has perfect recall and n > 0,
then (r , n − 1) ∼i (r

′, n′ − 1), while if i does not learn, then
(r , n + 1) ∼i (r

′, n′ + 1).
.
Definition (uis)
..

......

We say that a system R has a unique initial state if for all runs r ,
r ′ ∈ R, we have r(0) = r ′(0).

If R is a system with a unique initial state, then we have
(r , 0) ∼i (r

′, 0) for all runs r , r ′ in R and all agents i .
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Axiom system

We describe the axioms and inference rules that we need for
reasoning about knowledge and time for various classes of systems,
and state the completeness results.

K1. All tautologies of propositional logic

K2. Kiφ ∧ Ki (φ→ ψ) → Kiψ, i = 1, ...,m

K3. Kiφ→ φ, i = 1, ...,m

K4. Kiφ→ KiKiφ, i = 1, ...,m

K5. ¬Kiφ→ Ki¬Kiφ, i = 1, ...,m

R1. From φ and φ→ ψ infer ψ

R2. From φ infer Kiφ, i = 1, ...,m

This axiom system is known as S5m, which is a sound and
complete system for reasoning about knowledge alone.
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Axiom system

For reasoning about the temporal operators individually, the
following system (together with K1 and R1), is well known to be
sound and complete.

T1. ⃝ (φ) ∧⃝(φ→ ψ) → ⃝(ψ)

T2. ⃝ (¬φ) → ¬⃝ (φ)

T3. φUψ ↔ ψ ∨ (φ ∧⃝(φUψ))

RT1. From φ infer ⃝ φ

RT2. From φ′ → ¬ψ ∧⃝φ′ infer φ′ → ¬(φUψ)
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Axiom system

The system containing the above axioms and inference rules for
both knowledge and time is called S5Um. S5

U
m is easily seen to be

sound for Cm, the class of all systems for m agents.Given that
there is no necessary connection between knowledge and time in
Cm, it is perhaps not surprising that S5CU

m should be complete
with respect to Cm as well.Interestingly, even if we impose the
requirements of synchrony or uis, Cm remains complete; our
language is not rich enough to capture these conditions.
.
Theorem (3.1)
..

......

S5Um is a sound and complete axiomatization for the language KLm
with respect to Cm, Csync

m , Cuis
m , and Csync,uis

m , for all m.
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Axiom system

It is well known that the following two axioms and inference rule
characterize common knowledge:

C1. Eφ↔ ∧m
i=iKiφ

C2. Cφ→ E (φ ∧ Cφ)

RC1. From φ→ E (ψ ∧ Cφ) infer φ→ Cψ

Let S5CU
m be the result of adding C1, C2, and RC1 to S5Um.

.
Theorem (3.2)
..

......

S5CU
m is a sound and complete axiomatization for the language

CKLm with respect to Cm, Csync
m , Cuis

m , and Csync,uis
m , for all m.
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Axiom system

Consider extending S5Um by adding the following five axioms:

KT1. Ki2φ→ 2Kiφ, i = 1, ...,m

KT2. Ki ⃝ φ→ ⃝Kiφ, i = 1, ...,m

KT3. Kiφ1 ∧⃝(Kiφ2 ∧ ¬Kiφ3) → Li ((Kiφ1)U[(Kiφ2)U¬φ3])

KT4. Kiφ1UKiφ2 → Ki (Kiφ1UKiφ2), i = 1, ...,m

KT5. ⃝ Kiφ→ Ki ⃝ φ, i = 1, ...,m
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Axiom system

.
Theorem (3.4)
..

......

S5Um + KT3 is a sound and complete axiomatization for the
language KLm with respect to Cpr

m and Cpr ,uis
m , for all m.

KT3 characterise the condition of perfect recall.
.
Theorem (3.5)
..

......

S5Um + KT2 is a sound and complete axiomatization for the
language KLm with respect to Cpr ,sync

m and Cpr ,sync,uis
m , for all m.

KT2 suffices for completeness in Cpr ,sync
m . We do not need the

complications of KT3.
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Axiom system

.
Theorem (3.6)
..

......

S5Um + KT4 is a sound and complete axiomatization for the
language KLm with respect to Cnl

m for all m.

KT4 characterise the condition of no learning.
.
Theorem (3.7)
..

......

S5Um +KT3 +KT4 is a sound and complete axiomatization for the
language KLm with respect to Cnl ,pr

m for all m. Moreover, it is a
sound and complete axiomatization for the language KL1 with
respect to Cnl ,pr ,uis

1 .

.
Theorem (3.8)
..

......

S5Um + KT5 is a sound and complete axiomatization for the
language KLm with respect to Cnl ,sync

m .
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Axiom system

.
Theorem (3.9)
..

......

S5Um +KT2 +KT5 is a sound and complete axiomatization for the
language KLm with respect to Cnl ,pr ,sync

m for all m.

Finally, it can be shown that when we combine no learning,
synchrony, and uis, then not only do all agents consider the same
worlds possible initially, but they consider the same worlds possible
at all times. As a result, the axiom Kiφ↔ Kjφ is valid in this
case. This allows us to reduce to the single-agent case.
.
Theorem (3.10)
..

......

S5Um + KT2 + KT5 + {Kiφ↔ K1φ} is a sound and complete

axiomatization for the language KLm with respect to Cnl ,sync,uis
m

and Cnl ,pr ,sync,uis
m for all m.
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A Framework for Completeness Proofs

A finite sequence σ = i1i2...ik of agents, possibly equal to the null
sequence ϵ, is called an index if il ̸= il+1 for all l < k. We write
|σ| for the length k of such a sequence; the null sequence has
length equal to 0.

If S is a set, and S∗ is the set of all finite sequences over S , we
define the absorptive concatenation function # from S∗ × S to S∗

as follows. Given a sequence σ in S∗ and an element x of S , we
take σ#x = σ if the final element of σ is x . If the final element of
σ is not equal to x then we take σ#x to be σx , i.e. the result of
concatenating x to σ.
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A Framework for Completeness Proofs

If ψ ∈ CKLm, for each k ≥ 0, we define the k-closure clk(ψ), and
for each agent i , we define the k, i-closure clk,i (ψ). The definition
of these sets proceeds by mutual recursion:First, we let the basic
closure cl0(ψ) be the smallest set containing ψ that is closed under
subformulas, contains ¬φ if it contains φ and φ is not of the form
¬φ′, contains ECφ if it contains Cφ, and contains K1φ, ...,Knφ if
it contains Eφ.If i is a agent, we take clk,i (ψ) to be the union of
clk(ψ) with the set of formulas of the form Ki (φ1 ∨ ... ∨ φn) or
¬Ki (φ1 ∨ ... ∨ φn), where the φl are distinct formulas in
clk(ψ).Finally, clk+1(ψ) is defined to be ∪m

i=1clk,i (ψ).
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A Framework for Completeness Proofs

If X is a finite set of formulas we write φX for the conjunction of
the formulas in X . A finite set X of formulas is said to be
consistent if φX is consistent.If X is a finite set of formulas and φ
is a formula we write X  φ when ⊢ φX → φ. Clearly if X  φ1

and ⊢ φ1 → φ2 then X  φ2.

Suppose Cl is a finite set of formulas with the property that for all
φ ∈ Cl , either ¬φ ∈ Cl or φ is of the form ¬φ′ and φ′ ∈ Cl .Note
that the sets clk(ψ) and clk,i (ψ) have this property.We define an
atom of Cl to be a maximal consistent subset of Cl . Evidently, if
X is an atom of Cl and φ ∈ Cl , then either X  φ or X  ¬φ .
.
Lemma (4.1)
..
......⊢
∨

X an atom of Cl φX .
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We begin the construction of the model of ψ by first constructing
a pre-model, which is a structure ⟨S ,→,≈1, ...,≈n⟩ consisting of
a set S of states, a binary relation → on S , and for each agent i an
equivalence relation ≈i on S .

For φ ∈ KLm, we define ad(φ) to be the greatest number of
alternations of distinct K ′

i s along any branch in φ′s parse tree. Let
d = ad(ψ) if ψ ∈ KLm; otherwise let d = 0.

The set S consists of all the pairs (σ,X ) such that σ is an
index,|σ| ≤ d , and

(1) if σ = ϵ then X is an atom of cld(ψ), and

(2) if σ = τ then X is an atom of clk,i (ψ), where k = d − |σ|.
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The relation → is defined so that (σ,X ) → (τ,Y ) iff τ = σ and
the formula φX ∧⃝φY is consistent.If X is an atom we write
X/Ki for the set of formulas φ such that Kiφ ∈ X .We say that
states (σ,X ) and (τ,Y ) are i-adjacent if σ#i = τ#i .The relation
≈i is defined so that (σ,X ) ≈i (τ,Y ) iff σ and τ are i-adjacent
and X/Ki = Y /Ki . Clearly, i-adjacency is an equivalence relation,
as is the relation ≈i .

A σ-state (for ψ) is a pair (σ,X ) as above. If s = (σ,X ) is a
state, we define φs to be the formula φX , and write s  φ for
⊢ φs → φ.We say that the state s directly decides a formula φ if
either (a) φ ∈ X or (b) ¬φ ∈ X or (c) φ = ¬φ′ and φ′ ∈ X .

Note that if σ = τ i then each σ-state directly decides every
formula in cld−|σ|,i (ψ). Also, every ϵ-state directly decides every
formula in cld(ψ).And every state directly decides all formulas in
the basic closure, cl0(ψ).
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.
Lemma (4.2)
..

......

If s and t are i-adjacent states, then the same formulas of the form
Kiφ are directly decided by s and t.

.
Proof.
..

......

Suppose that s and t are i-adjacent, s is a σ-state, t is a τ -state.
Clearly if σ = τ , then s and t directly decide the same formulas,
since they are both maximal consistent subsets of the same set of
formulas.If σ ̸= τ , then either σ = τ i or τ = σi . By symmetry, it
suffices to deal with the case σ = τ i . Then |σ| = |τ |+ 1. By
definition, s directly decides the Ki -formulas in cld−|σ|,i (ψ), while t
directly decides the Ki -formulas in cld−|τ |,i (ψ) if τ = τ ′j or cld(ψ)
if τ = ϵ.
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A Framework for Completeness Proofs

.
Proof.
..

......

If τ = τ ′j , then the Ki -formulas directly decided by t are precisely
those in cld−|τ |,j(ψ). cld−|τ |,j(ψ) = cld−|τ |(ψ)

:::::::::

∪ Kj(φ1 ∨ ... ∨ φn)

∪¬Kj(φ1 ∨ ... ∨ φn), φi ∈ cld−|τ |(ψ). And
cld−|τ |(ψ) = ∪m

k=1cld−|σ|,k(ψ)
:::::::::::::::::::::::::::

.Hence the Ki -formulas directly

decided by t are precisely those in
∪m
k=1cld−|σ|,k(ψ) ∪ Kj(φ1 ∨ ... ∨ φn) ∪ ¬Kj(φ1 ∨ ... ∨ φn),

φi ∈ cld−|τ |(ψ).By the definition of cld−|σ|,i (ψ), we can see that
the Ki -formulas directly decided by t are precisely those in
cld−|σ|,i (ψ). If τ = ϵ, the process is similar.
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If s is a σ-state, we take Φs,i to be the disjunction of the formulas
φt , where t ranges over the σ-states satisfying s ≈i t,and we take
Φ+
s,i to be the disjunction of the formulas φt , where t ranges over

the (σ#i))-states satisfying s ≈i t.Observe that because ≈i is an
equivalence relation we have that if s ≈i t then Φs,i = Φt,i and
Φ+
s,i = Φ+

t,i . We can lists a number of knowledge formulas decided
by states.
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.
Lemma (4.3)
..

......

(a) If s is a σ-state and t is a σ-state or (σ#i)-state such that
s ≈i t, then s  Ki¬φt .

(b) For all σ-state s, we have s  KiΦs,i ; in addition, if σ#i ≤ d,
then s  KiΦ

+
s,i .

(c) For all σ-state s and (σ#i)-state t with s ≈i t, we have
s  Liφt .

(d) If s is a σ-state and t is a (σ#i)-state such that s ≈i t, then
t  ¬KiΦ

+
s,i .
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.
Lemma (4.4)
..
......If s ̸→ t, then ⊢ φs → ¬⃝ φt .

.
Proof.
..

......

If s ̸→ t, then φs ∧⃝φt is not consistent. That is ⊢ ¬(φs ∧⃝φt),
which is equivalent to ⊢ φs → ¬⃝ φt .

If T is a set of states, then we write φT for the disjunction of the
formulas φt for t in T .By ⊢

∨
X an atom of Cl φX , we have

⊢
∨

s a σ−state φs . Combined with above lemma, we derive that

.
Lemma (4.5)
..

......

Let s be a state and let T be the set of states t such that s → t.
Then s  ⃝φT .
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.
Lemma (4.6)
..

......

For all formulas α, β.γ, if ⊢ α→ ¬γ and
⊢ α→ ⃝(α ∨ (¬β ∧ ¬γ)), then ⊢ α→ ¬(βUγ)

This lemma provides a useful way to derive formulas containing the
until operator.
.
Definition
..

......

We define a →-sequence of states to be a (finite or infinite)
sequences s1, s2, ... such that s1 → s2 → ...
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A Framework for Completeness Proofs

.
Lemma (4.7)
..

......

(a) if ⃝φ ∈ cl0(ψ), then for all states t such that s → t, we have
s  ⃝φ iff t  φ.

(b) If Kiφ ∈ cl0(ψ), then s  ¬Kiφ iff there is some σ-state such
that s ≈i t and t  ¬φ. Moreover, if |σ#i | ≤ d, then
s  ¬Kiφ iff there is some |σ#i |-state t such that s ≈i t.

(c) if φ1Uφ2 ∈ cl0(ψ) then s  φ1Uφ2 iff there exists a
→-sequence s = s0 → s1...→ sn, where n ≥ 0, such that
sn  φ2, and sk  φ1 for all k < n.

(d) If Cφ ∈ cl0(ψ), then s  ¬Cφ iff there is a state t reachable
from s through the relation ≈i such that t  ¬φ.

This lemma shows that the pre-model almost satisfies the truth
definitions for formulas in the basic closure.
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We say that an infinite →-sequence of states (s0, s1, ...), where
sn = (σ,Xn) for all n, is acceptable if for all n ≥ 0, if φ1Uφ2 ∈ Xn

then there exists an m ≥ n such that sm  φ2 and sk  φ1 for all
k with n ≤ k < m.
.
Definition (enriched system)
..

......

An enriched system for ψ is a pair (R,Σ), where R is a set of runs
and Σ is a partial function mapping points in R× N to states for
ψ such that the following hold, for all runs r ∈ R
(1) If Σ(r , n) is defined then Σ(r , n′) is defined for all n′ > n, and

Σ(r , n),Σ(r , n + 1), ... is an acceptable →-sequence.

(2) For all points (r , n) ∼i (r
′, n′), if Σ(r , n) is defined then

Σ(r ′, n′) is defined and Σ(r , n) ≈i Σ(r
′, n′).
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A Framework for Completeness Proofs

.
Definition (enriched system)
..

......

(3) If Σ(r , n) and s are σ-states such that Σ(r , n) ≈i s, then there
exists a point (r ′, n′) such that (r , n) ∼i (r

′, n′) and
Σ(r ′, n′) = s.

(4) If Cφ ∈ cl0(ψ) and Σ(r , n)  ¬Cφ, then there exists a point
(r ′, n′) reachable (r , n) such that Σ(r ′, n′)  ¬φ.

An enriched+ system for ψ is a pair (R,Σ) satisfying conditions
1,2, and the following modification of 3:

(3’) If Σ(r , n) is a σ-states and s is a (σ#i)-state such that
Σ(r , n) ≈i s, then there exists a point (r ′, n′) such that
(r , n) ∼i (r

′, n′) and Σ(r ′, n′) = s.
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A Framework for Completeness Proofs

Given an enriched (resp., enriched+) system (R,Σ), we obtain an
interpreted system I = (R, π) by defining the valuation π on basic
propositions p by π(r , n)(p) = true just when Σ(r , n) is defined
and Σ(r , n)  p. If σ is the index i1#...#ik , let Kσφ be an
abbreviation for Ki1 ...Kikφ. (If σ = ϵ, then we take Kσφ to be φ.)

.
Theorem (4.10)
..

......

(a) If (R,Σ) is an enriched system for ψ, I is the associated
interpreted system, φ is in the basic closure cl0(ψ), and
Σ(r , n) is defined, then (I, r , n) � φ iff Σ(r , n)  φ.

(b) If (R,Σ) is an enriched+ system for ψ ∈ KLm, I is the
associated interpreted system, φ is in the basic closure cl0(ψ),
and Σ(r , n) is a σ-state, and ad(Kσφ) ≤ d, then (I, r , n) � φ
iff Σ(r , n)  φ.
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A Framework for Completeness Proofs

We prove part(a) by induction on the complexity of φ. If φ is a
propositional constant then the result is immediate from the
definition of I. The cases where φ is of the form ¬φ or φ1 ∧ φ2

are similarly trivial. This leaves five cases:
.
Proof.
..

......

(1) Suppose that φ is of the form ⃝φ1. Then (I, r , n) � φ if and
only if (I, r , n + 1) � φ1.Note that Σ(r , n + 1) must be
defined by Condition 1 of definition of enriched system. Since
φ1 is a subformula of φ it is in cl0(ψ), so it follows by the
induction hypothesis that (I, r , n + 1) � φ1 holds precisely
when Σ(r , n+ 1)  φ1.By Condition 1, Σ(r , n) → Σ(r , n+ 1),
so we obtain from Lemma 4.7(a) that Σ(r , n + 1)  φ1 if and
only if Σ(r , n)  ⃝φ1. Putting the pieces together, we get
(I, r , n) � φ if and only if Σ(r , n)  φ1.
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.
Proof.
..

......

(2) Suppose that φ is of the form φ1Uφ2. Then the subformulas
φ1 and φ2 are also in cl0(φ). Note also that by Condition 1 of
definition of enriched system, Σ(r , n′) is defined for all n′ ≥ n,
and Σ(r , n),Σ(r , n + 1),... is an admissible →-sequence.(⇐)
Assume Σ(r , n)  φ1Uφ2, then by Lemma 4.7(c) there exists
some n′ ≥ n such that Σ(r , n′)  φ2 and Σ(r , k)  φ1 for
n ≤ k < n′.By the induction hypothesis, this implies that
(I, r , n′) � φ2 and (I, r , k) � φ1 for n ≤ k < n′. In other
words, we have (I, r , n) � φ1Uφ2. (⇒) Assume
(I, r , n) � φ1Uφ2, then by the induction hypothesis and the
semantics of U we have that there exists some n′ ≥ n such
that Σ(r , n′)  φ2 and Σ(r , k)  φ1 for n ≤ k < n′.Since
Σ(r , n) → Σ(r , n + 1) → ...→ Σ(r , n′), it follows using
Lemma 4.7(c) that Σ(r , n)  φ1Uφ2.
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.
Proof.
..

......

(3) Suppose that φ is of the form Kiφ1. (⇐) Assume
Σ(r , n)  Kiφ1 and suppose that (r , n) ∼i (r

′, n′). Then by
Condition 2 of definition of enriched system, we have that
that Σ(r ′, n′) is defined and Σ(r , n) ≈i Σ(r

′, n′).Since
Kiφ1 ∈ cl0(ψ) we obtain Σ(r , n′)  Kiφ1. By K3 this implies
Σ(r , n′)  φ1.Since φ1 ∈ cl0(ψ), by the induction hypothesis,
we obtain that (I, r ′, n′) � φ1. This shows that
(I, r ′, n′) � φ1 for all points (r , n) ∼i (r

′, n′). That is, we
have (I, r , n) � Kiφ1.(⇒) suppose that Σ(r , n)  ¬Kiφ1 and
that Σ(r , n) is a σ-state. By Lemma 4.7(b), there exists a
σ-state t such that Σ(r , n) ≈i t and t  ¬φ1.By Condition 3
of definition of enriched system, there exists a point (r ′, n′)
such that (r , n) ∼i (r

′, n′) and Σ(r ′, n′) = t.Using the
induction hypothesis we obtain that (I, r ′, n′) � ¬φ1. It
follows that (I, r , n) � ¬Kiφ1.
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.
Proof.
..

......

(4) If φ is of the form Eφ1, the result follows easily from the
induction hypothesis, using axiom C1.

(5) Suppose φ is of the form Cφ1. By Condition 2, we have that
Σ(r ′, n′) is defined for all (r ′, n′) reachable from (r , n). An
easy induction on the length of the path from (r , n) to (r ′, n′),
using the fact that KiCφ1 is in the basic closure and axioms
C1, C2, and K3, can be used to show that Σ(r ′, n′)  Cφ1 for
each point (r ′, n′) reachable from (r , n). Using C1, C2, and
K3, it is easy to see that Σ(r ′, n′)  Cφ1. By the induction
hypothesis, this implies that (I, r ′, n′) � φ1. Thus,
(I, r , n) � Cφ1. For the converse, suppose that
Σ(r , n)  ¬Cφ1. Then by Condition 4, we have
Σ(r ′, n′)  ¬φ1 for some point (r ′, n′) reachable from (r , n).
By the induction hypothesis, we have that (I, r ′, n′) � ¬φ1,
and hence (I, r , n) � ¬Cφ1.
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.
Corollary (4.11)
..

......

If (R,Σ) is an enriched (resp., enriched+) system for ψ, I is the
associated interpreted system, and (r , n) is a point of I such that
Σ(r , n) is an ϵ-state and Σ(r , n)  ψ, then (I, r , n) � ψ.

We apply this corollary in all our completeness proofs, constructing
an appropriate enriched or enriched+ system in all cases.
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Dealing with Cm,Csync
m ,Cuis

m , and Csync ,uis
m

The fact that S5CU
m is sound for Cm the class of all systems is

straightforward (see also [1]). To prove completeness of S5Um for
the language KLm and of S5CU

m for the language CKLm with
respect to Cm, Csync

m ,Cuis
m , and Csync,uis

m , we construct an enriched
system, and use Corollary 4.11. The proof proceeds in the same
way whether or not common knowledge is in the language.We
assume here that the language includes common knowledge and
that we are dealing with the axiom system S5CU

m when
constructing the states in the enriched structure.Recall that in this
case we work with ϵ-states only.
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Dealing with Cm,Csync
m ,Cuis

m , and Csync ,uis
m

The following result suffices for the generation of the acceptable
sequences required for the construction of an enriched system in
the cases not involving no learning.
.
Lemma (5.1)
..

......

Every finite →-sequence of states can be extended to an infinite
acceptable sequence.

.
Lemma (5.2)
..
......The pair (Rsync ,Σ) is an enriched system.

.
Proof.
..
......It can be proved by verifying the conditions of enriched system.
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Dealing with Cm,Csync
m ,Cuis

m , and Csync ,uis
m

.
Theorem
..

......S5C
U
m is complete for CKLm (resp.,S5Um is complete for KLm)

.
Proof.
..

......

Clearly the system Rsync is synchronous, so the interpreted system
I derived from (Rsync ,Σ) is also synchronous. Let s be an σ-state
such that s  ψ. Such a state must exist because ψ was assumed
consistent.By Lemma 5.1 there exists an acceptable sequence
(s0, s1, ...) with s = s0. Let r be the corresponding run in Rsync

with r(0) = s0. Corollary 4.11 implies that (I, r , 0) � ψ.This
establishes the completeness of the axiomatization S5CU

m for the
language CKLm (resp.,of S5Um for the language KLm) with respect
to the classes of systems Cm and Csync

m .
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Dealing with Cm,Csync
m ,Cuis

m , and Csync ,uis
m

.
Lemma
..

......

Suppose x is a subset of {pr , sync}. If φ ∈ CKLm is satisfiable
with respect to Cx

m, then it is also satisfiable with respect to Cx ,uis
m .

.
Proof.
..

......

Suppose I = (R, π) ∈ Cx
m. We define a system I ′ by adding a new

initial state to each run in R.Formally, we define the system
I ′ = (R′, π′) as follows. Let l be some local state that does not
occur in I and let se be any state of the environment.For each run
r ∈ R, let r+ be the run such that r+(0) = (se , l , ..., l) and
r+(n + 1) = r(n) for n > 0. Let R′ = {r+ : r ∈ R}.The valuation
π′ is given by π′(r , 0)(p) = false and π′(r , n + 1)(p) = π(r , n)(p),
for n ≥ 0 and propositions p. It is clear that I ′ is a system with
unique initial states.
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Dealing with Cm,Csync
m ,Cuis

m , and Csync ,uis
m

.
Lemma
..

......

Suppose x is a subset of {pr , sync}. If φ ∈ CKLm is satisfiable
with respect to Cx

m, then it is also satisfiable with respect to Cx ,uis
m .

.
Proof.
..

......

Moreover, if I is synchronous, then so is I ′, and if I is a system
with perfect recall then so is I ′.A straightforward induction on the
construction of the formula φ ∈ CKLm now shows that, for all
points (r , n) in I, we have (I, r , n) � φ iff (I ′, r+, n + 1) � φ.

This lemma shows that sound and complete axiomatizations for
the class of systems satisfying some subset of the properties of
perfect recall and synchrony are also sound and complete
axiomatizations for the class of systems with the same subset of
these properties, but with unique initial states in addition.
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Discussion

It is worth remarking that our results are very sensitive to the
language studied. As we have seen, the language considered in this
paper is too coarse to reflect some properties of systems. In the
absence of the other properties, synchrony and unique initial states
do not require additional axioms. This may no longer be true for
richer languages. For example, if we allow past-time operators[4].
We can describe more interaction between knowledge and time.

Suppose that we add an operator ⊖ such that (I, r , n) � ⊖φ if
n ≥ 1 and (I, r , n − 1) � ⊖φ.Notice that ”¬ ⊖ true” expresses the
property ”the time is 0” and ”⊖ ¬⊖ true” expresses the property
”the time is 1”.Similarly, we can inductively define formulas that
express the property the time is m for each m ≥ 0.If time = m is
an abbreviation for this formula, then (time = m) → Ki (time = m)
is valid in Csync , for each time m.
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Discussion

On the other hand, by adding past time operators we can simplify
the axiom for perfect recall. Introducing the operator S for
”since”, we may show that the formula

(Kiφ)S(Kiψ) → ((Kiφ)S(Kiψ))

is valid in Cpr . This axiom very neatly expresses the meaning of
perfect recall.

Besides changes to the language, there are also additional
properties of systems worth considering. One case of interest is the
class of asynchronous message passing systems of [1]. That
extra axioms are required in such systems is known [1], but the
question of complete axiomatization is still open.
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