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Data on reasoning about relative likelihood

(φ ≿ ψ) φ is at least as likely as ψ.
(φ ≻ ψ) φ is more likely than ψ.

△φ φ is more likely than not (probably φ).

Intuitively valid/invalid inferences:
V1 △φ→ ¬△¬φ V2 △(φ ∧ ψ) → (△φ ∧△ψ)
V3 △φ→ △(φ ∨ ψ) V11 (ψ ≿ φ) → (△φ→ △ψ)
V4 (φ ≿ ⊥) V12 (ψ ≿ φ) → ((φ ≿ ¬φ) → (ψ ≿ ¬ψ))
V5 (⊤ ≿ φ) V13 ((φ ∧ ¬ψ) ≻ ⊥) → ((φ ∨ ψ) ≻ ψ)

V6 (□φ→ △φ) I1 ((φ ≿ ψ) ∧ (φ ≿ χ)) → (φ ≿ (ψ ∨ χ))
V7 (△φ→ ♢φ) I2 (φ ≿ ¬φ) → (φ ≿ ψ)

I3 (△φ→ (φ ≿ ψ)).
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Data on reasoning about relative likelihood

“Hard core for the logic of uncertain reasoning”

• φ ≿ ⊥
• ⊥ ̸≿ ⊤
• ((φ ≿ ψ) ∧ (ψ ≿ χ)) → (φ ≿ χ)

• (φ ≿ ψ) ↔ ((φ ∧ ¬ψ) ≿ (ψ ∧ ¬φ))

“Disjunction problem”

• ((φ ≿ ψ) ∧ (φ ≿ χ)) → (φ ≿ (ψ ∨ χ))

“Totality”

• (φ ≿ ψ) ∨ (ψ ≿ φ)
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What should the semantics for ≿ be?

Desidarata:

• We want the logic generated by the semantics of ≿ to conform to the data.
• The semantics should not be too ad hoc, and in particular, the above
requirement should not be hard-wired into the semantics: they should
follow “naturally”.

Three basic types of semantics:

• event-ordering semantics;
• measure-based semantics;
• world-ordering semantics.
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Event-ordering semantics

Definition
An event-ordering (EO) frame is a tuple ⟨W,R,≿⟩ where R ⊆ W2 is serial and
≿: W → ℘(W)2 s.t. for every w ∈ W, ≿w is a preorder on ℘(R(w)).

An EO model is a tuple ⟨W,R,≿, V⟩ where ⟨W,R,≿⟩ is an EO frame and
V : Prop → ℘(W).

Semantics for ≿: M,w |= φ ≿ ψ iff JφKMw ≿w JψKMw .

Here JφKM = {w ∈ W | M,w |= φ}, and Xw = X ∩ R(w).

Event-ordering semantics is like algebraic semantics: it’s too close to syntax and
you get exactly the logic that correspond to the constraints you put on ≿.
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World-ordering semantics

Primitives: each world w is associated with a set R(w) of worlds and a preorder
⪰w on R(w).

Definition
A world-order (WO) frame is a tuple ⟨W,R,⪰⟩ where R ⊆ W2 is serial and
⪰: W → R(W)2 s.t. for every w ∈ W, ≿w is a preorder on R(w).

A WO model is a tuple ⟨W,R,⪰, V⟩ where ⟨W,R,⪰⟩ is a WO frame and
V : Prop → ℘(W).

Most famously used for counter-factuals: R(w) is the set of ‘possible worlds’
according to w, and ⪰w compares similarity/normality relative to w.
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Lifting world-ordering to event-ordering

Given a preorder ⪰ on X, we get the following preorder ⪰l on ℘(X):

A ⪰l B ⇐⇒ ∀b ∈ B∃a ∈ A,a ⪰ b.

This lifting is first proposed in semantics by Lewis for counterfactuals:
M,w |= φ ♢→ ψ iff (JφK ∩ JψK)w ⪰l

w (JφK ∩ J¬ψK)w, assuming that ⪰ is also total.

Kratzer interpreted ≿ by this lifting. Call this the l-lifting semantics:

M,w |= φ ≿ ψ ⇐⇒ JφKw ⪰l
w JψKw.

“For every ψ-world, there is an at least as likely φ-world.”
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Disjunction problem

l-lifting semantics validate the following:

((φ ≿ ψ) ∧ (φ ≿ χ)) → (φ ≿ (ψ ∨ χ)).

This is very bad. The problem is double-counting.
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measure-based semantics

We could also generate event-ordering ≿ by assigning numbers to events and
order the events by the numbers assigned to them.

Definition
A measure-based (MB) frame is a tuple ⟨W,R, µ⟩ where R ⊆ W2 is serial and µ is
a function on W s.t. µw : ℘(R(w)) → [0, 1]. MB models are defined by adding a
valuation V. Then M,w |= φ ≿ ψ iff µw(JφKw) ≥ µw(JψKw).
Without furthre requirements on µ, we only validate reflexivity, transitivity, and
totality for ≿.

However, we can easily require µ to be a probability measure. Then we get
probabilistic frames/models.

9



measure-based semantics

We could also generate event-ordering ≿ by assigning numbers to events and
order the events by the numbers assigned to them.

Definition
A measure-based (MB) frame is a tuple ⟨W,R, µ⟩ where R ⊆ W2 is serial and µ is
a function on W s.t. µw : ℘(R(w)) → [0, 1]. MB models are defined by adding a
valuation V. Then M,w |= φ ≿ ψ iff µw(JφKw) ≥ µw(JψKw).

Without furthre requirements on µ, we only validate reflexivity, transitivity, and
totality for ≿.

However, we can easily require µ to be a probability measure. Then we get
probabilistic frames/models.

9



measure-based semantics

We could also generate event-ordering ≿ by assigning numbers to events and
order the events by the numbers assigned to them.

Definition
A measure-based (MB) frame is a tuple ⟨W,R, µ⟩ where R ⊆ W2 is serial and µ is
a function on W s.t. µw : ℘(R(w)) → [0, 1]. MB models are defined by adding a
valuation V. Then M,w |= φ ≿ ψ iff µw(JφKw) ≥ µw(JψKw).
Without furthre requirements on µ, we only validate reflexivity, transitivity, and
totality for ≿.

However, we can easily require µ to be a probability measure. Then we get
probabilistic frames/models.

9



measure-based semantics

We could also generate event-ordering ≿ by assigning numbers to events and
order the events by the numbers assigned to them.

Definition
A measure-based (MB) frame is a tuple ⟨W,R, µ⟩ where R ⊆ W2 is serial and µ is
a function on W s.t. µw : ℘(R(w)) → [0, 1]. MB models are defined by adding a
valuation V. Then M,w |= φ ≿ ψ iff µw(JφKw) ≥ µw(JψKw).
Without furthre requirements on µ, we only validate reflexivity, transitivity, and
totality for ≿.

However, we can easily require µ to be a probability measure. Then we get
probabilistic frames/models.

9



Probability measures

Definition
A probability measure µ on W is a function from ℘(W) to [0, 1] such that:

• µ(∅) = 0, µ(W) = 1;
• for any A,B ⊆ X with A ∩ B = ∅, µ(A ∪ B) = µ(A) + µ(B).

µ is countably additive if further for any countable sequence Ai of disjoint
subsets of W, µ(

∪
Ai) =

∑
µ(Ai).

µ is completely additive if further for any set A ⊆ ℘(W) of pair-wise disjoint
subsets of W, µ(

∪
A) = supA0⊆finA

∑
A∈A0

µ(A).

For convenience, we only consider probability measures that assign numbers to
every subset of the set of all possible worlds.
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Probability models

Definition
A sharp-probability (SP) frame is a tuple ⟨W,R, µ⟩ where R ⊆ W2 is serial and
for each w ∈ W, µw is a probability measure on R(w). Models are obtained by
adding a valuation. Then M,w |= φ ≿ ψ iff µw(JφKw) ≥ µw(JψKw).

This gets the data right, and it also validates totality. To remove totality, we can
use imprecise-probability (IP) frames.

Definition
An imprecise-probability (IP) frame is a tuple ⟨W,R,P⟩ where R ⊆ W2 is serial
and for each w ∈ W, Pw is a non-empty set of probability measures on R(w).
Models are obtained by adding a valuation. Then M,w |= φ ≿ ψ iff
∀µ ∈ Pw, µ(JφKw) ≥ µ(JψKw).
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Rescuing the l-lifting idea

We have to solve the double-counting problem.

How would someone untrained in FOL understand:

for every ψ-world, there is an as likely φ-world.

The Skolem function must be injective!

Definition
Given a preorder ⪰ on W, its i-lifting ⪰i on ℘(W) is defined by

A ⪰i B ⇐⇒ ∃f : B → A injective and inflationary: ∀b ∈ B, f(b) ⪰ b.

Then i-lifting semantics defines: M,w |= φ ≿ ψ iff JφKw ⪰i
w JψKw.
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Performance

Good news: i-lifting semantics does not have the disjunction problem. It also
invalidates totality.

Also good news: φ ≿ ⊥, ⊥ ̸≿ ⊤, and ((φ ≿ ψ) ∧ (ψ ≿ χ)) → (φ ≿ χ) are valid.

For qualitative additivity (φ ≿ ψ) ↔ ((φ \ ψ) ≿ (ψ \ φ)):

• it is not valid in full generality;
• but it is valid as long as ⪰w is Noetherian for any w: there is no infnite
non-decreasing sequence · · · x3 ⪰w x2 ⪰w x1;

• in particular, it is valid on all finite models.

Thus, the i-lifting solution must be paired with the Noetherianess assumption.
This is an apparent weak spot.
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Logic

When you propose a semantics to fit some data points, there is always a worry
that your semantics may validate something undesirable that’s not in your list of
data points.

Axiomatization (partially) solves this problem.

We use two languages: L(≿,♢) and L(≿).

An important abbreviation

(φ1, φ2, · · · , φn) ≡ (ψ1, ψ2, · · · , ψn).

This says that |{i | φi is true}| = |{i | ψi is true}|.
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Logic

A logic of imprecise probability L in a language L extending L(≿) is a subset of
L that

(1) contains all instances in L of the theorems of the propositional logic
(2) contains all instances in L of the following axiom schemas:

• the axiom of non-negativity: φ ≿ ⊥;
• the axiom of non-triviality: ¬(⊥ ≿ ⊤);
• the axiom of generalized finite cancellation (GFC) (n ∈ N, k ∈ N \ {0}):(

(φ1, . . . , φn, φ
′, . . . , φ′︸ ︷︷ ︸
k times

) ≡ (ψ1, . . . , ψn, ψ
′, . . . , ψ′︸ ︷︷ ︸
k times

) ≿ ⊤
)
→(

(
∧n

i=1(φi ≿ ψi)) → (ψ′ ≿ φ′)
)
;

and (3) is closed under the following rules:

• the rule of necessitation for ≿: if φ ∈ L, then (φ ≿ ⊤) ∈ L;
• the rule of modus ponens: if φ, (φ→ ψ) ∈ L, then ψ ∈ L.

15



Logic

A logic of imprecise probability L in a language L extending L(≿) is a subset of
L that (1) contains all instances in L of the theorems of the propositional logic

(2) contains all instances in L of the following axiom schemas:

• the axiom of non-negativity: φ ≿ ⊥;
• the axiom of non-triviality: ¬(⊥ ≿ ⊤);
• the axiom of generalized finite cancellation (GFC) (n ∈ N, k ∈ N \ {0}):(

(φ1, . . . , φn, φ
′, . . . , φ′︸ ︷︷ ︸
k times

) ≡ (ψ1, . . . , ψn, ψ
′, . . . , ψ′︸ ︷︷ ︸
k times

) ≿ ⊤
)
→(

(
∧n

i=1(φi ≿ ψi)) → (ψ′ ≿ φ′)
)
;

and (3) is closed under the following rules:

• the rule of necessitation for ≿: if φ ∈ L, then (φ ≿ ⊤) ∈ L;
• the rule of modus ponens: if φ, (φ→ ψ) ∈ L, then ψ ∈ L.

15



Logic

A logic of imprecise probability L in a language L extending L(≿) is a subset of
L that (1) contains all instances in L of the theorems of the propositional logic
(2) contains all instances in L of the following axiom schemas:

• the axiom of non-negativity: φ ≿ ⊥;
• the axiom of non-triviality: ¬(⊥ ≿ ⊤);
• the axiom of generalized finite cancellation (GFC) (n ∈ N, k ∈ N \ {0}):(

(φ1, . . . , φn, φ
′, . . . , φ′︸ ︷︷ ︸
k times

) ≡ (ψ1, . . . , ψn, ψ
′, . . . , ψ′︸ ︷︷ ︸
k times

) ≿ ⊤
)
→(

(
∧n

i=1(φi ≿ ψi)) → (ψ′ ≿ φ′)
)
;

and (3) is closed under the following rules:

• the rule of necessitation for ≿: if φ ∈ L, then (φ ≿ ⊤) ∈ L;
• the rule of modus ponens: if φ, (φ→ ψ) ∈ L, then ψ ∈ L.

15



Logic

A logic of imprecise probability L in a language L extending L(≿) is a subset of
L that (1) contains all instances in L of the theorems of the propositional logic
(2) contains all instances in L of the following axiom schemas:

• the axiom of non-negativity: φ ≿ ⊥;

• the axiom of non-triviality: ¬(⊥ ≿ ⊤);
• the axiom of generalized finite cancellation (GFC) (n ∈ N, k ∈ N \ {0}):(

(φ1, . . . , φn, φ
′, . . . , φ′︸ ︷︷ ︸
k times

) ≡ (ψ1, . . . , ψn, ψ
′, . . . , ψ′︸ ︷︷ ︸
k times

) ≿ ⊤
)
→(

(
∧n

i=1(φi ≿ ψi)) → (ψ′ ≿ φ′)
)
;

and (3) is closed under the following rules:

• the rule of necessitation for ≿: if φ ∈ L, then (φ ≿ ⊤) ∈ L;
• the rule of modus ponens: if φ, (φ→ ψ) ∈ L, then ψ ∈ L.

15



Logic

A logic of imprecise probability L in a language L extending L(≿) is a subset of
L that (1) contains all instances in L of the theorems of the propositional logic
(2) contains all instances in L of the following axiom schemas:

• the axiom of non-negativity: φ ≿ ⊥;
• the axiom of non-triviality: ¬(⊥ ≿ ⊤);

• the axiom of generalized finite cancellation (GFC) (n ∈ N, k ∈ N \ {0}):(
(φ1, . . . , φn, φ

′, . . . , φ′︸ ︷︷ ︸
k times

) ≡ (ψ1, . . . , ψn, ψ
′, . . . , ψ′︸ ︷︷ ︸
k times

) ≿ ⊤
)
→(

(
∧n

i=1(φi ≿ ψi)) → (ψ′ ≿ φ′)
)
;

and (3) is closed under the following rules:

• the rule of necessitation for ≿: if φ ∈ L, then (φ ≿ ⊤) ∈ L;
• the rule of modus ponens: if φ, (φ→ ψ) ∈ L, then ψ ∈ L.

15



Logic

A logic of imprecise probability L in a language L extending L(≿) is a subset of
L that (1) contains all instances in L of the theorems of the propositional logic
(2) contains all instances in L of the following axiom schemas:

• the axiom of non-negativity: φ ≿ ⊥;
• the axiom of non-triviality: ¬(⊥ ≿ ⊤);
• the axiom of generalized finite cancellation (GFC) (n ∈ N, k ∈ N \ {0}):(

(φ1, . . . , φn, φ
′, . . . , φ′︸ ︷︷ ︸
k times

) ≡ (ψ1, . . . , ψn, ψ
′, . . . , ψ′︸ ︷︷ ︸
k times

) ≿ ⊤
)
→(

(
∧n

i=1(φi ≿ ψi)) → (ψ′ ≿ φ′)
)
;

and (3) is closed under the following rules:

• the rule of necessitation for ≿: if φ ∈ L, then (φ ≿ ⊤) ∈ L;
• the rule of modus ponens: if φ, (φ→ ψ) ∈ L, then ψ ∈ L.

15



Logic

A logic of imprecise probability L in a language L extending L(≿) is a subset of
L that (1) contains all instances in L of the theorems of the propositional logic
(2) contains all instances in L of the following axiom schemas:

• the axiom of non-negativity: φ ≿ ⊥;
• the axiom of non-triviality: ¬(⊥ ≿ ⊤);
• the axiom of generalized finite cancellation (GFC) (n ∈ N, k ∈ N \ {0}):(

(φ1, . . . , φn, φ
′, . . . , φ′︸ ︷︷ ︸
k times

) ≡ (ψ1, . . . , ψn, ψ
′, . . . , ψ′︸ ︷︷ ︸
k times

) ≿ ⊤
)
→(

(
∧n

i=1(φi ≿ ψi)) → (ψ′ ≿ φ′)
)
;

and (3) is closed under the following rules:

• the rule of necessitation for ≿: if φ ∈ L, then (φ ≿ ⊤) ∈ L;
• the rule of modus ponens: if φ, (φ→ ψ) ∈ L, then ψ ∈ L.

15



Logic

A logic of imprecise probability L in a language L extending L(≿) is a subset of
L that (1) contains all instances in L of the theorems of the propositional logic
(2) contains all instances in L of the following axiom schemas:

• the axiom of non-negativity: φ ≿ ⊥;
• the axiom of non-triviality: ¬(⊥ ≿ ⊤);
• the axiom of generalized finite cancellation (GFC) (n ∈ N, k ∈ N \ {0}):(

(φ1, . . . , φn, φ
′, . . . , φ′︸ ︷︷ ︸
k times

) ≡ (ψ1, . . . , ψn, ψ
′, . . . , ψ′︸ ︷︷ ︸
k times

) ≿ ⊤
)
→(

(
∧n

i=1(φi ≿ ψi)) → (ψ′ ≿ φ′)
)
;

and (3) is closed under the following rules:

• the rule of necessitation for ≿: if φ ∈ L, then (φ ≿ ⊤) ∈ L;

• the rule of modus ponens: if φ, (φ→ ψ) ∈ L, then ψ ∈ L.

15



Logic

A logic of imprecise probability L in a language L extending L(≿) is a subset of
L that (1) contains all instances in L of the theorems of the propositional logic
(2) contains all instances in L of the following axiom schemas:

• the axiom of non-negativity: φ ≿ ⊥;
• the axiom of non-triviality: ¬(⊥ ≿ ⊤);
• the axiom of generalized finite cancellation (GFC) (n ∈ N, k ∈ N \ {0}):(

(φ1, . . . , φn, φ
′, . . . , φ′︸ ︷︷ ︸
k times

) ≡ (ψ1, . . . , ψn, ψ
′, . . . , ψ′︸ ︷︷ ︸
k times

) ≿ ⊤
)
→(

(
∧n

i=1(φi ≿ ψi)) → (ψ′ ≿ φ′)
)
;

and (3) is closed under the following rules:

• the rule of necessitation for ≿: if φ ∈ L, then (φ ≿ ⊤) ∈ L;
• the rule of modus ponens: if φ, (φ→ ψ) ∈ L, then ψ ∈ L.

15



Logic

Let IP(≿) be the smallest logic of imprecise probability in L(≿).

For any list S of axiom schemas defined in L(≿), IPS(≿) is the smallest normal
logic of imprecise probability in L(≿) that contains all instances in L(≿) of the
schemas in S.

IP(φ ≿ ψ) ∨ (ψ ≿ φ)(≿) is the logic of sharp-probability frames (sound and
complete) in L(≿).

IP(≿) is the logic of imprecise-probability frames. It is also the logic of all
Noetherian WO frames.
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Logic with ♢

The logic diverge when we add ♢. This is because there can’t be an injection from
a non-empty set to the empty set, but a non-empty set can get probability 0.

A normal logic of imprecise probability L in a language L extending L(≿,♢) is a
subset of L that (1) is a logic of imprecise probability in L, (2) contains all
instances in L of the following axiom schemas:

• the axiom of duality: ♢φ↔ ¬□¬φ;
• the axiom K: □φ→ (□(φ→ ψ) → □ψ);
• the axiom of certainty: □φ→ (φ ≿ ⊤);

and (3) is closed under the following rule:

• the rule of necessitation for □: if φ ∈ L then □φ ∈ L.

IP(≿,♢) and IPS(≿,♢) are defined as usual.

17



Logic with ♢

The logic diverge when we add ♢. This is because there can’t be an injection from
a non-empty set to the empty set, but a non-empty set can get probability 0.

A normal logic of imprecise probability L in a language L extending L(≿,♢) is a
subset of L that

(1) is a logic of imprecise probability in L, (2) contains all
instances in L of the following axiom schemas:

• the axiom of duality: ♢φ↔ ¬□¬φ;
• the axiom K: □φ→ (□(φ→ ψ) → □ψ);
• the axiom of certainty: □φ→ (φ ≿ ⊤);

and (3) is closed under the following rule:

• the rule of necessitation for □: if φ ∈ L then □φ ∈ L.

IP(≿,♢) and IPS(≿,♢) are defined as usual.

17



Logic with ♢

The logic diverge when we add ♢. This is because there can’t be an injection from
a non-empty set to the empty set, but a non-empty set can get probability 0.

A normal logic of imprecise probability L in a language L extending L(≿,♢) is a
subset of L that (1) is a logic of imprecise probability in L,

(2) contains all
instances in L of the following axiom schemas:

• the axiom of duality: ♢φ↔ ¬□¬φ;
• the axiom K: □φ→ (□(φ→ ψ) → □ψ);
• the axiom of certainty: □φ→ (φ ≿ ⊤);

and (3) is closed under the following rule:

• the rule of necessitation for □: if φ ∈ L then □φ ∈ L.

IP(≿,♢) and IPS(≿,♢) are defined as usual.

17



Logic with ♢

The logic diverge when we add ♢. This is because there can’t be an injection from
a non-empty set to the empty set, but a non-empty set can get probability 0.

A normal logic of imprecise probability L in a language L extending L(≿,♢) is a
subset of L that (1) is a logic of imprecise probability in L, (2) contains all
instances in L of the following axiom schemas:

• the axiom of duality: ♢φ↔ ¬□¬φ;
• the axiom K: □φ→ (□(φ→ ψ) → □ψ);
• the axiom of certainty: □φ→ (φ ≿ ⊤);

and (3) is closed under the following rule:

• the rule of necessitation for □: if φ ∈ L then □φ ∈ L.

IP(≿,♢) and IPS(≿,♢) are defined as usual.

17



Logic with ♢

The logic diverge when we add ♢. This is because there can’t be an injection from
a non-empty set to the empty set, but a non-empty set can get probability 0.

A normal logic of imprecise probability L in a language L extending L(≿,♢) is a
subset of L that (1) is a logic of imprecise probability in L, (2) contains all
instances in L of the following axiom schemas:

• the axiom of duality: ♢φ↔ ¬□¬φ;

• the axiom K: □φ→ (□(φ→ ψ) → □ψ);
• the axiom of certainty: □φ→ (φ ≿ ⊤);

and (3) is closed under the following rule:

• the rule of necessitation for □: if φ ∈ L then □φ ∈ L.

IP(≿,♢) and IPS(≿,♢) are defined as usual.

17



Logic with ♢

The logic diverge when we add ♢. This is because there can’t be an injection from
a non-empty set to the empty set, but a non-empty set can get probability 0.

A normal logic of imprecise probability L in a language L extending L(≿,♢) is a
subset of L that (1) is a logic of imprecise probability in L, (2) contains all
instances in L of the following axiom schemas:

• the axiom of duality: ♢φ↔ ¬□¬φ;
• the axiom K: □φ→ (□(φ→ ψ) → □ψ);

• the axiom of certainty: □φ→ (φ ≿ ⊤);

and (3) is closed under the following rule:

• the rule of necessitation for □: if φ ∈ L then □φ ∈ L.

IP(≿,♢) and IPS(≿,♢) are defined as usual.

17



Logic with ♢

The logic diverge when we add ♢. This is because there can’t be an injection from
a non-empty set to the empty set, but a non-empty set can get probability 0.

A normal logic of imprecise probability L in a language L extending L(≿,♢) is a
subset of L that (1) is a logic of imprecise probability in L, (2) contains all
instances in L of the following axiom schemas:

• the axiom of duality: ♢φ↔ ¬□¬φ;
• the axiom K: □φ→ (□(φ→ ψ) → □ψ);
• the axiom of certainty: □φ→ (φ ≿ ⊤);

and (3) is closed under the following rule:

• the rule of necessitation for □: if φ ∈ L then □φ ∈ L.

IP(≿,♢) and IPS(≿,♢) are defined as usual.

17



Logic with ♢

The logic diverge when we add ♢. This is because there can’t be an injection from
a non-empty set to the empty set, but a non-empty set can get probability 0.

A normal logic of imprecise probability L in a language L extending L(≿,♢) is a
subset of L that (1) is a logic of imprecise probability in L, (2) contains all
instances in L of the following axiom schemas:

• the axiom of duality: ♢φ↔ ¬□¬φ;
• the axiom K: □φ→ (□(φ→ ψ) → □ψ);
• the axiom of certainty: □φ→ (φ ≿ ⊤);

and (3) is closed under the following rule:

• the rule of necessitation for □: if φ ∈ L then □φ ∈ L.

IP(≿,♢) and IPS(≿,♢) are defined as usual.

17



Logic with ♢

The logic diverge when we add ♢. This is because there can’t be an injection from
a non-empty set to the empty set, but a non-empty set can get probability 0.

A normal logic of imprecise probability L in a language L extending L(≿,♢) is a
subset of L that (1) is a logic of imprecise probability in L, (2) contains all
instances in L of the following axiom schemas:

• the axiom of duality: ♢φ↔ ¬□¬φ;
• the axiom K: □φ→ (□(φ→ ψ) → □ψ);
• the axiom of certainty: □φ→ (φ ≿ ⊤);

and (3) is closed under the following rule:

• the rule of necessitation for □: if φ ∈ L then □φ ∈ L.

IP(≿,♢) and IPS(≿,♢) are defined as usual.

17



Logic with ♢

The logic diverge when we add ♢. This is because there can’t be an injection from
a non-empty set to the empty set, but a non-empty set can get probability 0.

A normal logic of imprecise probability L in a language L extending L(≿,♢) is a
subset of L that (1) is a logic of imprecise probability in L, (2) contains all
instances in L of the following axiom schemas:

• the axiom of duality: ♢φ↔ ¬□¬φ;
• the axiom K: □φ→ (□(φ→ ψ) → □ψ);
• the axiom of certainty: □φ→ (φ ≿ ⊤);

and (3) is closed under the following rule:

• the rule of necessitation for □: if φ ∈ L then □φ ∈ L.

IP(≿,♢) and IPS(≿,♢) are defined as usual.

17



Logic with ♢

IP(≿,♢) is the logic of all IP frames, but not the logic of all Noetherian WO
frames.

IPR(≿,♢) is the logic of all Noetherian WO frames in L(≿,♢), where

R : ♢φ↔ (⊥ ̸≿ φ).

Definition
A probability measure µ is regular if it assigns nonzero numbers to non-empty
sets. An SP(IP)-frame(model) is regular if all the probability measures used
there are regular.

IPR(≿,♢) is the logic of all regular IP frames.

18
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Extra Frame Properties

For special interpretations of R and ⪰,P , the following properties are useful.

• R-reflexivity: w ∈ R(w) for each w ∈ W;
• Reflexivity: w ∈ R(w) for all w ∈ W and µ(w) > 0 for all µ ∈ Pw;
• uniformity: for all w, v ∈ W, R(w) = R(v) and ⪰w=⪰v (resp. Pw = Pv);
• universality: the conjunction of R-reflexivity and uniformity, i.e., for all
w, v ∈ W, R(w) = W and ⪰w=⪰v (resp. Pw = Pv).
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Logics

Theorem
IPX(≿,♢) is the logic of all Y IP frames, where

• X has R : ♢φ↔ (⊥ ̸≿ φ) iff Y has regularity;
• X has Mc : (⊥ ≿ φ) → ¬φ iff Y has reflexivity;
• X has the introspection axioms iff Y has uniformity.

Theorem
IPRX(≿,♢) is the logic of all Y Noetherian WO frames and Y regular IP frames,
where

• X has Mc iff Y has R-reflexivity;
• X has the introspective axioms iff Y has uniformity.
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Logics

Theorem
IPX(≿) is the logic of all Y regular IP frames and also the logic of all Y
Noetherian WO frames, where

• X has Mc iff Y has R-reflexivity;
• X has the introspective axioms iff Y has uniformity.

Proof idea: representation theorem, filtration, and turning regular IP models to
equivalent WO models.
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Summing up

i-lifting semantics with Noetherian assumption and IP semantics with regularity
are identical.

If you don’t like regularity, then i-lifting semantics is not for you. But regularity
is actually quite popular in philosophical literature.

Given regularity, for i-lifting semantics to generate the same logic as IP
semantics does, we still need Noetherian condition, for soundness.
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Noetherian assumption

How bad is the Noetherian assumption?

If we never use infinite models, then we are fine. But one can argue that there
are important infinite models violating Noetherian condition, such as fair
lotteries on infinite domains. (Marushak 2020)

How important are infinite models for natural language semantics is debatable,
but let’s say we need them. Then we need to modify i-lifting.
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Modifying i-lifting

A lifting x in general is a class function defined on all preorders s.t. that for any
preorder ⪰ a non-empty domain W, ⪰x is a preorder on ℘(W).

Given a lifting x, the x-lifting semantics for ≿ is

M,w |= φ ≿ ψ ⇐⇒ JψKw ⪰x
w JφK.

We have seen i-lifting semantics.

Goal: find a lifting x s.t. the x-lifting semantics over all WO-frames generate the
logic IPR(≿,♢).

The lifting should also be not too far away from i-lifting.
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Modifying i-lifting

A sufficient condition for a lifting x to work:

• x-lifting and i-lifting behaves the same on finite preorders;
• x-lifting always generate GFC orders.

Definition
A GFC order is a preorder ≿ on some ℘(W) for some non-empty W s.t.

• X ≿ ∅ for all X ⊆ W, and ∅ ̸≿ W
• for every ⟨A1,A2, · · · ,An, X, X, · · · X︸ ︷︷ ︸

k many

⟩ and ⟨B1,B2, · · · ,Bn, Y, Y, · · · Y︸ ︷︷ ︸
k many

⟩ that are

balanced: for any w ∈ W, |{i | w ∈ Ai}|+ k[w ∈ X] = |{i | w ∈ Bi}|+ k[w ∈ Y],
if Ai ≿ Bi for i = 1 . . .n, then Y ≿ X.
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Representation theorem

Theorem
Let W be a finite non-empty set and ≿ a preorder on ℘(W). Then, the following
are equivalent:

• ≿ is a GFC order;
• there is a set P of probability distributions on W that represents ≿:
for any X, Y ⊆ W, X ≿ Y iff ∀µ ∈ P, µ(X) ≥ µ(Y).
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Representation theorem

Theorem
Let W be a non-empty set and ≿ a preorder on ℘(W). Then, the following are
equivalent:

• ≿ is a GFC order;
• there is a set P of probability distributions on W allowing hyperreals that
represents ≿: for any X, Y ⊆ W, X ≿ Y iff ∀µ ∈ P, µ(X) ≥ µ(Y).

27



A minimal lifting

Definition
The fi-lifting of a preorder ⪰ on W is defined by

A ⪰fi B ⇐⇒ (B \ A) is finite and ∃f : B \ A → A \ B injective and inflationary.

Two features of this lifting:

• if A ⊋ B, then B ̸⪰fi A;
• if A, B are disjoint infinite sets, then they are incomparable by ⪰fi.

Qualitative additivity is baked in, but we also have full GFC.
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A minimal lifting

Theorem
For any preorder ⪰ on a non-empty W, ⪰fi is a GFC order. In fact,

• it is the smallest GFC order on ℘(W) extending {⟨{x}, {y}⟩ | x ⪰ y} and
• it is represented by

{µ ∈
∪

U∈fUlt(℘fin(W))

∆(℘(W),ΠUR) | w ⪰ w′ ⇒ µ(w) ≥ µ(w′)}.
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A conservative lifting

Definition
The ni-lifting of a preorder ⪰ on W is defined by A ⪰fi B iff

(B \ A) is Noetherian and ∃f : B \ A → A \ B injective and inflationary.

Theorem
ni-lifting coincides with i-lifting on Noetherian preorders and always generate
GFC orders.

Distinguishing fi and ni liftings:

• 1, 1/2, 1/4, 1/8, · · · ;
• a disjoint union of N many totally connected N.
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Representable by completely additive measures

Definition
The cma-lifting of a preorder ⪰ on W is defined by A ⪰cma B iff

∃f : B ∩Wfin → A ∩Wfin injective and inflationary.

Here Wfin = {w ∈ W | {w′ ∈ W | w′ ⪰ w} is finite}.

Theorem
For any preorder ⪰ on a non-empty W, ⪰cma is a GFC order represented by

{µ ∈ ∆cma(℘(W), [0, 1]) | w ⪰ w′ ⇒ µ(w) ≥ µ(w′)}.

31



Representable by completely additive measures

Definition
The cma-lifting of a preorder ⪰ on W is defined by A ⪰cma B iff

∃f : B ∩Wfin → A ∩Wfin injective and inflationary.

Here Wfin = {w ∈ W | {w′ ∈ W | w′ ⪰ w} is finite}.

Theorem
For any preorder ⪰ on a non-empty W, ⪰cma is a GFC order represented by

{µ ∈ ∆cma(℘(W), [0, 1]) | w ⪰ w′ ⇒ µ(w) ≥ µ(w′)}.

31



Representable by finitely additive measures

Definition
The fa-lifting of a preorder ⪰ on W is defined by A ⪰fa B iff

B \ A finite and ∃f : (B \ A) ∩Wfin → (A \ B) ∩Wfin injective and inflationary.

Theorem
For any preorder ⪰ on a non-empty W, ⪰fa is a GFC order represented by

{µ ∈ ∆(℘(W), [0, 1]) | w ⪰ w′ ⇒ µ(w) ≥ µ(w′)}.

32



Representable by finitely additive measures

Definition
The fa-lifting of a preorder ⪰ on W is defined by A ⪰fa B iff

B \ A finite and ∃f : (B \ A) ∩Wfin → (A \ B) ∩Wfin injective and inflationary.

Theorem
For any preorder ⪰ on a non-empty W, ⪰fa is a GFC order represented by

{µ ∈ ∆(℘(W), [0, 1]) | w ⪰ w′ ⇒ µ(w) ≥ µ(w′)}.

32



Summary

Accepting regularity, inflationary injection based lifting semantics can be as
good as numerical semantics.

I think we should be as agnostic about infinities as possible and use fi-lifting. I
still don’t understand ni-lifting as we lack a representation theorem.

We also don’t know what’s the logic of i-lifting over all WO frames.
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Thank you!

33


