Several Definitions

Definition 1. (Priority Sequences) *Given the language of the classical epistemic logic* \mathcal{L}_{EL} , *a priority structure is a tuple* $\mathcal{G} = \langle \Phi, \prec \rangle$ *such that:*

- $\Phi \subset \mathcal{L}_{EL}$ and Φ is finite;
- ≺ is a strict order on Φ such that for all formulas φ, ψ ∈ Φ, it holds that: if φ ≺ ψ, then ψ logically implies φ.

Definition 2. (Epistemic Betterness Structures Based On Priority Structures) Given an \mathcal{L}_{EL} -priority structure $\mathcal{G} = \langle \Phi, \prec \rangle$, the structure $M = \langle S, \sim_1, \cdots, \sim_n, \leqslant_{\mathcal{G}}, V \rangle$ is an epistemic betterness structure based on \mathcal{G} where

- *S* is a nonempty set of states;
- $\sim_i : S \times S$ is the epistemic relation for agent *i* (equivalence relation);
- $V: \mathbf{P} \to \mathcal{P}(S);$
- $\leq_{\mathcal{G}}: S \times S$ such that $s \leq_{\mathcal{G}} s' \iff \forall \varphi \in \Phi : s \in \|\varphi\|_V \Rightarrow s' \in \|\varphi\|_V$.

Here, $\|\varphi\|_V = \{s \in S \mid M, s \models \varphi \text{ and } \varphi \in \Phi\}.$

Definition 3. (Semantics of $\bigcirc(\varphi|\psi)$) Let $M = \langle S, \sim_1, \cdots, \sim_n, \leq_{\mathcal{G}}, V \rangle$ be an epistemic betterness structure based on the priority structure \mathcal{G} .

 $M_{\mathcal{G}}, s \models \bigcirc (\varphi | \psi) \quad iff \quad \max_{\leq g} \| \psi \|_M \subseteq \| \varphi \|_M.$

Definition 4. (Semantics of $\bigcirc_i(\varphi|\psi)$) Let $M = \langle S, \sim_1, \cdots, \sim_n, \leqslant_{\mathcal{G}}, V \rangle$ be an epistemic betterness structure based on the priority structure \mathcal{G} .

 $M_{\mathcal{G}}, s \models \bigcirc_i(\varphi|\psi) \quad iff \quad \max_{\leqslant g}(\|\psi\|_M \cap [s]^{\sim_i}) \subseteq \|\varphi\|_M.$