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Abstract Multi-modal versions of propositional logics S5 or S4—commonly accepted
as logics of knowledge—are capable of describing static states of knowledge but they
do not reflect how the knowledge changes after communications among agents. In the
present paper (part of broader research on logics of knowledge and communications) we
define extensions of the logic S5 which can deal with public communications. The logics
have natural semantics. We prove some completeness, decidability and interpretability re-
sults and formulate a general method that solves certain kind of problems involving pu-
blic communications—among them well known puzzles of Muddy Children and Mr. Sum
& Mr. Product. As the paper gives a formal logical treatment of the operation of restriction
of the universe of a Kripke model, it contributes also to investigations of semantics for modal
logics.

Keywords Logics of knowledge · Communications · Kripke models · Modal logic S5,
(applicable in) distributed systems · (applicable in) expert systems

1 Introduction

A students’ proverb says “No one knows everything but the true wisdom is to know whom to
ask”. This emphasizes that knowledge can consist not only of ground facts but can also involve
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statements about somebody else’s knowledge. Reasoning about knowledge is characteristic
especially for those situations where information is exchanged.

Example 1.1 Muddy Children

Father: At least one of you has a muddy forehead.
Child 1: I do not know whether my forehead is muddy.
Child 2: I do not know whether my forehead is muddy.
Child 3: I know whether my forehead is muddy or not but I won’t tell you!
If the participants of the dialog can see each other (but no one can see his own forehead), is
the forehead of Child 3 muddy?

Example 1.2 Mr. Sum & Mr. Product

Mr. Puzzle: I choose two natural numbers greater than 1.
I will tell the sum of the numbers only to Mr. Sum,
and their product only to Mr. Product.

He tells them.
Mr. Product: I do not know the numbers.
Mr. Sum: I knew you didn’t.
Mr. Product: But now I know!
Mr. Sum: So do I!
What can be the numbers if they are not greater than 100?

The first of these puzzles was discussed in (Parikh 1987); the second one is a classic exercise
in combinatorics and was further popularized by J. McCarthy. In this paper we propose and
investigate formal logical systems which can deal with communication sessions such as those
in 1.1, 1.2.

The communication session of Muddy Children consists of a sequence of four public
communications. In the communication session of the example 1.2 Mr. Puzzle performs two
semi-public communications—one directed to Mr. Product and one—to Mr. Sum. (Semi-
public communications considered in Plaza, J. A, 1988, Logics of knowledge and commu-
nications, unpublished are beyond the scope of this paper and the results will be published
elsewhere.) The first communication of Mr. Product and the first communication of Mr. Sum
are both based only on the knowledge acquired after Mr. Puzzle’s communications—Mr.
Sum’s communication does not depend on Mr. Product’s one. Therefore, we consider them
as parallel (i.e. performed at the same time) public communications. After them, two other
public communications follow in a sequence.

Note that a communication consists not only of the message that was sent. To specify
a communication one needs also description of the information received by various agents.
Despite the fact that communication channels are guaranteed, information received is usually
different from the message that was sent—it depends on the kind of communication. For
instance, different information would be received by Mr. Sum if Mr. Puzzle sent the value of
the sum of the numbers not in a semi-public communication but in a public one—Mr. Sum
would then know that Mr. Product knows the sum.

Before we consider these problems in greater detail let us recall basic notions related
to logics of knowledge. For general logical notions and those specific to modal logics the
reader can consult (Barwise 1977), (Gabbay and Guenthner 1984), S. Kripke’s paper in
Linsky (1971), and Fitting (1991).
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Definition 1.3 Language Lm(P)
Lm(P)—the language of the logic of knowledge with m agents—is the language with a set
P of propositional symbols and containing the following connectives:

∧, ∨, →, ≡, ¬, �, ⊥, K1, . . . ,Km, Kw1, . . . ,Kwm .

(�,⊥ stand for “true” and “false”;
Kiα can be read “agent i knows that α is true”;
Kwiα—“agent i knows whether α is true or not”.)

Our basic tool is Kripke’s possible worlds semantics. Each agent knows only some aspects of
the situation that is considered. The agent does not know the actual world but he can imagine
several possible worlds which do not differ in these aspects. Each group of such indistin-
guishable worlds constitutes an equivalence class of the indiscernibility relation associated
with the agent. The agent knows a fact if the fact is true in all possible worlds which are
indiscernible from the actual world.

Definition 1.4 Kripke models
By a Kripke model (with equivalence relations) for a language Lm(P) we understand any
tuple M = 〈W, w0, R1, . . . , Rm, vP 〉, where

• W is a nonempty set (of possible worlds),
• w0 ∈ W (is the actual world),
• R1, . . . , Rm ⊆ W × W are equivalence relations

(called indiscernibility relations),
• vP: W × P −→ {0, 1} (is a valuation of propositional symbols).

The relation of satisfaction of a formula in a world w of a Kripke model M is defined as the
smallest relation meeting the following conditions:

M, w|�m�
M, w|�m p iff vP (w, p) = 1 ( for any prop. symbol p ∈ P),
M, w|�mα ∧ β iff M, w|�mα and M, w|�mβ,

M, w|�mα ∨ β iff M, w|�mα or M, w|�mβ,

M, w|�mα → β iff M, w|�mα implies M, w|�mβ,

M, w|�mα ≡ β iff M, w|�mα is equivalent to M, w|�mβ,

M, w|�m¬α iff not M, w|�mα,

M, w|�mKiα iff for any w′, if wRiw
′ then M, w′|�mα,

M, w|�mKwiα iff M, w|�mKiα or M, w|�mKi¬α.
A formula α is said to be true in a model M iff M, w0|�mα; this is denoted by M |�mα.
Given a set of formulas � we write �|�mα to denote that α is true in all models in which the
formulas of � are true. A formula α is logically true or valid iff ∅|�mα; this is denoted by
|�mα.

Definition 1.5 Logic LKm

For any language Lm(P) the consequence operation �m of the logic of knowledge LKm is
defined by means of the following schemata (i = 1, . . . ,m):

1. axiom schemata of the propositional classical logic, including Modus Ponens,
2. Kiα → α,
3. Kiα → Ki Kiα,
4. ¬Kiα → Ki¬Kiα,
5. Kiα ∧ Ki (α → β) → Kiβ,
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6. Kwiα ≡ Kiα ∨ Ki¬α,

7. α, α → β
β

,

8. �mα
Kiα

The logic LKm can be viewed as a logic of an external observer who can reason about the
world and about agents’ knowledge. Even if the external observer can see that α is true it does
not imply that the agents know α, therefore the rule α

Kiα
is not assumed in LKm . We allow

agents to be logically omniscient—to know all the logical theorems—ones which are true
in all situations. Exactly this is expressed by the rule 8—the assertion mark in the premiss
of the rule indicates that it can be applied only to formulas which are logically true. Two
examples: �mK2K1(p → p) but {p} � �mK1 p.

Remark 1.6

1. LKm is a multimodal version of the Lewis logic S5 .
2. LKm is a conservative extension of the classical propositional logic.
3. Linguistical extensions of theories formalized in LKm are conservative.
4. If m < n then LKn is a conservative extension of LKm :

if � ∪ {α} ⊆ Lm and � �n α then ��mα.
5. Deduction lemma holds: � ∪ {α}�mβ iff ��mα → β.
6. LKm is sound and complete: �|�mα iff ��mα .
7. LKm is compact: if every finite subset of � has a model then � has a model.
8. LKm has the finite model property (and therefore it is decidable):

if ��mα then there exists a finite Kripke model M with equivalence relations such that
M � |�mα.

Cf. S. Kripke’s paper in Linsky (1971), Gabbay and Guenthner (1984) and Halpern and
Moses (1985).

In example 1.2, Mr. Sum and Mr. Product talk about values of numbers. To express their
statements we need new unary logical connectives Kvi to be added to our language. Kvi d
can be read “agent i knows the value of the designator d ”. For instance KvSumnumbers,
KvHolmesmurderer or Kv5temperature. The designators we consider are nonrigid—each
can be thought as a name whose meaning varies from one world to another—for instance
temperature can designate different real numbers in different possible worlds. Nonrigid
designators are sometimes called nonrigid constants—this is because they can be considered
as individual constants of a first order language, constants—which have nonrigid semantical
interpretations. (Yet most treatments of the first order modal logic interpret constants and
functions as rigid. For a broader perspective cf. Stalnaker and Thomason (1968) and Fitting
(1991). The language Ld

m(P, D) that is defined below is more expressive than the propositio-
nal language Lm(P) but as it does not admit individual variables and quantifiers—it is still
less expressive than the full first order modal language.
An agent is said to know the value of a designator d if d has the same value in all worlds
indistinguishable from the actual one. Note that Kvi can be thought as a generalization of
Kwi —in fact, Kwiα means “agent i knows the (logical) value of α ”.

Definition 1.7 Language Ld
m(P, D)

Consider a set P of propositional letters and a set D of individual constants. Ld
m(P, D)—

the language of the logic of knowledge with designators—is the extension of the language
Lm(P) in which for every i = 1, . . . ,m and every d ∈ D the expression Kvi d is allowed as
an atomic formula.
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Definition 1.8 Kripke models with nonrigid designators
By a Kripke model (with equivalence relations) and with nonrigid designators for a language
Ld

m(P, D)we understand a tuple M = 〈W, w0, R1, . . . , Rm, vP , vD〉where 〈W, w0, R1, . . . ,

Rm, vP 〉 is a Kripke model (with equivalence relations) for Lm(P), and where vD is a func-
tion with an arbitrary range, defined on W × D. The notion of satisfaction is defined as in
usual Kripke models but the following condition is added:

M, w|�mKvi d iff for any w′, w′′, if wRiw
′ and wRiw

′′ then vD(w
′, d) = vD(w

′′, d).

Note that that as the considered relations are equivalences we have:

w|�mKvi d iff for any w′, if wRiw
′ then vD(w

′, d) = vD(w, d).

Definition 1.9 Logic LKd
m

For any language Ld
m(P, D) the consequence operation �d

m of the logic of knowledge with
nonrigid designators LKd

m is the extension of the logic LKm obtained by adjoining the
following schemata (i = 1, . . . ,m):

1. Kvi d → Ki Kvi d ,
2. ¬Kvi d → Ki¬Kvi d ,

3.
�d

mα

Kiα
.

The explanation following Definition 1.5 applies to rule 3 as well.

Remark 1.10

1. Linguistical extensions of theories formalized in LKd
m are conservative.

2. LKd
m(Ld

m(P, D)) is a conservative extension of LKm(Lm(P)):
if � ∪ {α} ⊆ Lm(P) and ��d

mα then ��mα .
3. If m < n then LKd

n is a conservative extension of LKd
m :

if � ∪ {α} ⊆ Ld
m and � �d

n α then ��d
mα.

4. Deduction lemma holds: � ∪ {α}�d
mβ iff ��d

mα → β.
5. LKd

m is sound and complete: ��d
mα iff �|�mα .

6. LKd
m is compact: if every finite subset of � has a model then � has a model.

7. LKd
m has the finite model property and therefore it is decidable.

8. LKd
m is interpretable in LKm .

More exactly, LKd
m(Ld

m(P, D)) is interpretable in LKm(Lm(P ∪ {pd: d ∈ D})).
Let ∗ : Ld

m(P, D) −→ Lm(P ∪ {pd : d ∈ D}) be the mapping that replaces every
occurrence of Kvi d in a formula by Kwi pd ; Denote {γ ∗: γ ∈ �} by �∗; Then ��d

mα iff
�∗�mα

∗.

The mapping ∗ above has the following informal meaning: instead of asking “Do you know
who is the author of Knowledge and Belief ?” ask “Do you know whether it is J. Hintikka
who is the author of Knowledge and Belief ?”. Cf. (Plaza, J. A, 1988, Logics of knowledge
and communications, unpublished).

At the end of the preliminaries let us remind the concept of common knowledge. Define:
Eα = K1α ∧ . . . ∧ Kmα . Eα intuitively means “every agent knows that α is true.”

Define E0α = α, En+1α = EEnα. For instance, E2α intuitively means “everybody knows
that everybody knows that α is true.”

If the agents are gathered in a conference room and if one states aloud a ground fact p then
each agent gains an infinite set of formulas: {Ei p : i ∈ N }—in other words, p becomes

[259]



170 Synthese (2007) 158:165–179

a common knowledge. (Note that if not a ground fact p but a more complicated formula α
were communicated, it could happen thatαwould be no longer true after this communication;
cf. Example 2.2.) The set {Eiα: i ∈ N } will be denoted Cα (C stands for “common”). Note
that Cα represents an infinite conjunction and according to our terminology it is not a formula.
In a Kripke model M = 〈W, w0, R1, . . . , Rm, vP 〉 (with equivalence relations) M, w|�mCα
iff for any w′, if wRcw′ then M, w′|�mα, where Rc is the transitive closure of the union
R1 ∪ . . . ∪ Rm .

For a broader perspective on problems of reasoning about knowledge we recommend: J.
Halpern’s overview of the subject in Halpern (1986), chapter 9 of Genesareth and Nilsson
(1987) with Bibliographical and Historical Remarks 9.13 (Halpern and Moses 1985)—review
of logics of knowledge, J. Hintikka’s classical book (Hintikka 1962) and his paper in (Linsky
1971), and papers (Parikh 1987), (Halpern 1986), (Vardi 1988).

2 Logics of public communications

We consider communication sessions with discrete time. The session begins at the time 0. A
public communication can be imagined as a statement made in a conference room in which
all agents are present. If at a moment t agent i starts a public communication with a message
{α} then at moment t +1 it becomes common knowledge of all agents that i knew that α was
true at t . (We consider only honest communications, i.e. those in which an agent knows α
before he communicates α). Although the situation involves time and common knowledge,
it can be described in a simpler way: the information received through this communication
causes each agent to change the Kripke model he has at the time t deleting those possible
worlds in which Kiα is not true. This is the idea behind the following definition.

Definition 2.1
Let L+

m be the extension of a language Lm(P) in which a new binary logical connective +
is allowed. For any Kripke model M = 〈W, w0, R1, . . . , Rm, vP 〉 for Lm(P) we define a
notion of satisfaction of formulas of L+

m :

M, w|�mα+β iff M, w|�mα and M|α,w|�mβ

where M|α is the restriction of the model M to the set

{w ∈ W : M, w|�mα}.
Intuitively α + β is true iff β would be true after a (honest) public communication of {α}
performed by an omniscient agent (i.e. an agent whose equivalence is equality).

Another example: β will be true in the situation after a sequence of (honest) public
communications: {α1} by the agent 1,..., of {αk} by the agent k iff ((. . . (K1α1 + K2α2) +
. . .)+ Kkαk)+ β is true at the present.

Yet another example: β will be true in the situation after (honest) parallel public commu-
nications of {α1} by the agent 1 and of {α2} by the agent 2 iff (K1α1 ∧ K2α2)+ β is true at
the present.

Here is a general version. For every i, t let �t
i be a (honest) message sent in a public

communication by the agent i at the time t . (A message is a finite set of formulas;�t
i = ∅ if

there was no message.) Then β will be true at the time t + 1 iff (∧m
i=1Kiδ

0
i )+ (∧m

i=1Kiδ
1
i )+

. . . + (∧m
i=1Kiδ

t
i ) + β is true at the time 0, where δk

i = ∧�k
i and + is considered as right-

associative. (The problem of placing parentheses in such formulas will disappear when we
learn in 2.14 that the + is associative.)
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Example 2.2
Consider the language with the set P = {p} of propositional symbols and a Kripke model
M = 〈W, w0, R1, R2, vP 〉 where

W = {w0, w1, w2},
equivalence classes of R1 are {w0} and {w1, w2},
equivalence classes of R2 are {w0, w1} and {w2},
vP (w0, p) = 1, vP (w1, p) = 0, vP (w2, p) = 0.

Consider α = K1¬Kw2 p. We will check whether the formula α → α + α is true in w0.
We have:

M, w0|�mα,M, w1 � |�mα, M, w2 � |�mα.

Let us consider the restricted model

M|α = 〈W|α,w0, R1|α, R2|α, vP|α〉
Now W|α= {w0} and R1|α , R2|α are equalities.
We have M|α,w0 � |�mα. Thus M, w0 � |�mα + α.
Consequently M, w0 � |�mα → α + α.

This example shows a situation in which α is initially true in a model but after a public
communication of {α}, it becomes false.

Proposition 2.3
The following schemata are true in every Kripke model:

α + p ≡ α ∧ p ( f oranyproposi tionalletter p ∈ P)

α + � ≡ α

α + ⊥ ≡ ⊥
α + (β1 ∧ β2) ≡ (α + β1) ∧ (α + β2)

α + (β1 ∨ β2) ≡ (α + β1) ∨ (α+β2)

α + ¬β ≡ α ∧ ¬(α + β)

α + (β1 → β2) ≡ α ∧ (α + β1 → α + β2)

α + (β1 ≡ β2) ≡ α ∧ (α + β1 ≡ α + β2)

α + Kiβ ≡ α ∧ Ki (α → α + β)

Definition 2.4 Logic LK+
m

For any language L+
m the consequence operation �+

m of the logic of public communications
LK+

m is defined as the extension of LKm obtained by adding all the schemata listed in

Proposition 2.3 and the rule of replacement of logical equivalents:
�+

mα ≡ β
φ(α) ≡ φ(β)

The schemata of Proposition 2.3 are not independent. In fact it would be enough to take
as axioms of LK+

m the first one and a subset of the remaining ones that corresponds to a
complete set of logical connectives.

Theorem 2.5 On interpretability of LK+
m in LKm

The equivalences of the proposition 2.3, schema 6 of Definition 1.5 and the rule of the
replacement of equivalents determine a (unique) way of translating a formula α of L+

m into
a formula α∗ of Lm.

∗ is an interpretation of LK+
m in LKm : �+

mα iff �mα
∗.

Moreover �+
mα ≡ α∗.
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Proof The equivalence �+
mα ≡ α∗ is a straightforward consequence of the definition of ∗.

Now we will show �+
mα iff �mα

∗.
By induction on φ show that |�mα ≡ β implies |�mφ(α) ≡ φ(β).
(This proves the soundness of LK+

m .)
Now, assume �mα

∗. Thus �+
mα

∗, and by the first equivalence in this proof: �+
mα.

For the proof of the other implication, assume �+
mα. Thus by the first equivalence in this

proof we have �+
mα

∗; thus by the soundness of LK+
m : |�mα

∗, and by the completeness of
LKm : �mα

∗. ��
Proposition 2.6
+ is not definable in terms of the remaining logical connectives: there is no schema φ(α, β)
such that: + does not occur in φ and for any language L+

m and any formulas α, β in L+
m , we

have �+
mα + β ≡ φ(α, β).

Proof If there were such a schema φ then the rule of uniform substitution of formulas for
propositional letters ψ(p)/ψ(α) would be admissible in LK+

m (by induction on ψ). But as
|�mα + p ≡ α ∧ p and � |�mα + α ≡ α ∧ α (by Example 2.2) this rule is not valid.
Contradiction. ��
Theorem 2.7 On soundness and completeness of LK+

m ��+
mα iff �|�mα.

Proof Soundness was already mentioned in the proof of Theorem 2.5.
For the proof of completeness notice that:

(i) �+
mβ ≡ β∗ (from Theorem 2.5),

(ii) |�mβ ≡ β∗ (from i, by soundness).

Assume �|�mα. Then by ii: �∗|�mα
∗, thus by completeness of LKm : �∗�mα

∗, thus
�∗�+

mα
∗, thus by i: ��+

mα. ��
Proposition 2.8 If m < n then LK+

n is a conservative extension of LK+
m : if � ∪ {α} ⊆ L+

m
and � �+

n α then ��+
mα.

Proof Assume � � �+
mα. By completeness of LK+

m there is a model M of � in which α is not
true. M can be expanded to a model for LK+

n . By the soundness: � ��+
n α. ��

Theorem 2.9 On compactness of LK+
m

LK+
m is compact: if every finite subset of � has a model then � has a model.

Proof For the proof of compactness assume that � ⊆ L+
m does not have a model. Then

�|�m⊥ and by completeness: ��+
m⊥. By finiteness of proofs there is a finite �0 ⊆ � such

that �0�+
m⊥. �0 does not have a model. ��

Theorem 2.10 On deduction
� ∪ {α}�+

mβ iff ��+
mα → β

Proof Assume � ∪ {α}�+
mβ. By soundness: � ∪ {α}|�mβ. Thus �∗ ∪ {α∗}|�mβ

∗.
By completeness of LKm : �∗ ∪ {α∗}�mβ

∗ and by deduction lemma for LKm :
�∗�mα

∗ → β∗.
As α∗ → β∗ = (α → β)∗ we have �∗�m(α → β)∗, so: �∗�+

m(α → β)∗.
Therefore, ��+

mα → β.
The other implication in the theorem is straightforward.
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Proposition 2.11 LK+
m is a conservative extension of LKm: if � ∪ {α} ⊆ Lm and ��+

mα

then ��mα.

Proof Assume ��+
mα. Thus, by soundness of LK+

m : �|�mα; thus by completeness of LKm :
��mα. ��

Theorem 2.12 On decidability of LK+
m

The logic LK+
m has finite model property: if � �+

mα then there exists a finite Kripke model M
with equivalence relations such that M � |�mα. Therefore, for any language L+

m the relation
�+

mα is decidable.

Note that in the theorem above α has to be a formula of a particular language, not a schema.
We do not know how to decide whether a schema is admissible in LK+

m .

Proof Assume � �+
mα. Then, by interpretability, � �mα

∗. By the finite model property of LKm

there exist required M such that M � |�mα
∗ and as |�mα

∗ ≡ α we have M � |�mα. ��

A formula α ∈ Ld
m(P, D) is said to be K-positive if it does not contain negative occurrences

of Ki ,Kwi ,Kvi . In other words, K-positive formulas are those equivalent to formulas built
of classical formulas and formulas of the form Kvi d by means of ∧, ∨ and Ki .

Proposition 2.13

1. If a formulaβ ∈ L+
m contains neither Ki nor Kwi (but + is allowed) then �+

mα+β ≡ α∧β
and �+

mα + Kiβ ≡ α ∧ Ki (α → β).
2. If a formula β ∈ L+

m is K-positive then �+
mα ∧ β → α + β.

Proof

1. By induction on β.
2. By the monotonic property of K-positive formulas:

if γ is K-positive, M, w|�mγ,w ∈ M ′ ⊆ M then M ′, w|�mγ .

Proposition 2.14
The following schemata are admissible in LK+

m:

1. α + (β + γ ) ≡ (α + β)+ γ

2. α + β → α

3. (α1 + · · · + αi + · · · + αn) → (α1 + · · · + αi )

4. � + α ≡ α

5. ⊥ + α ≡ ⊥
6. (α + β1) ∧ (α + (β1 → β2)) → (α + β2)

7. α + Kiβ → α + β

8. α + Kiβ → α + Ki Kiβ

9. α + ¬Kiβ → α + Ki¬Kiβ

10. α + (Kiβ1 ∧ Kiβ2) ≡ α + Ki (β1 ∧ β2)

11.
�+

mα ≡ α′, �+
mβ → β ′

α + β → α′ + β ′

12.
�+

mβ1 ∧ β2 → β3
α + β1 ∧ α + β2 → α + β3
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Proof
All items can be proved semantically. We will show only the first item.
M, w0|�mα + (β + γ ) iff
M, w0|�mα and M|α,w0|�mβ and (M|α) |β,w0|�mγ .
On the other hand:
M, w0|�m(α + β)+ γ iff
M, w0|�mα and M|α,w0|�mβ and M|α+β,w0|�mγ .
It is enough to notice that (M|α) |β = M|α+β (but neither of these is M|α∧β ).

Remark 2.15
The following schemata are not admissible in LK+

m :

1. α + β ≡ β + α

2. α + β → β

3. α ∧ β → α + β

4. α → α + α

5. α + (β1 + β2) ≡ α ∧ ((α + β1)+ (α + β2))

6. ψ(p)
ψ(α)

(where p is a propositional letter)

7.
�+

mβ → β ′
α + β ′ → α + β

8.
�+

mα → α′
α + β → α′ + β

9.
�+

mα → α′
α′ + β → α + β

Note also that although the rule
�+

mβ → β ′
α + β → α + β ′ is admissible, M |�mβ → β ′ does not

imply M |�mα + β → α + β ′. (Compare also with 2.16.)
One of the counterexamples required for the proof of the remark above was given in 2.2;

the remaining ones are left to the reader.

Immediately from the definition of the semantics of + we obtain:

Proposition 2.16
If for any w ∈ M, M, w|�mα ≡ α′ then for any w ∈ M, M, w|�mα + β ≡ α′ + β.

Proposition 2.16 is of importance for applications (cf. Example 2.17) and it should not be
confused with the following statement which is not true:

if for any w ∈ M , M, w|�mβ ≡ β ′ then for any w ∈ M ,
M, w|�mα + β ≡ α + β ′.

Also the following more general statement is not true:

if for any w ∈ M M, w|�mα ≡ α′ then for any w ∈ M,
M, w|�mφ(α) ≡ φ(α′).

Example 2.17 Muddy Children II
Consider the model M corresponding to the initial situation in the puzzle of Muddy Children.
Possible worlds:

W = {〈c, c, c〉, 〈c, c,m〉, 〈c,m, c〉, 〈c,m,m〉, 〈m, c, c〉, 〈m, c,m〉, 〈m,m, c〉, 〈m,m,m〉}
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(Think of 〈c, c,m〉 as “Child1 is clean, Child2 is clean, Child3 is muddy".) We do not specify
the actual world in this model—we will test a formula corresponding to the dialog of Muddy
Children in all the worlds of the model. If the formula is true in a world, the world can be
taken as the actual world. In this way we will obtain all the worlds (situations) in which the
dialog could take place.

Indiscernibility relations:

〈x1, x2, x3〉RFather〈y1, y2, y3〉 iff x1 = y1, x2 = y2 and x3 = y3

〈x1, x2, x3〉RChild1〈y1, y2, y3〉 iff x2 = y2 and x3 = y3

〈x1, x2, x3〉RChild2〈y1, y2, y3〉 iff x1 = y1 and x3 = y3

〈x1, x2, x3〉RChild3〈y1, y2, y3〉 iff x1 = y1 and x2 = y2

(Two worlds look alike to Child1 if they agree on the second and third positions because
Child3 can see only the foreheads of Child2 and Child3, etc.)

In our language L+
4 we use the following propositional symbols:

atLeastOneMuddy, muddy1, muddy2, muddy3 with the following interpretations:

atLeastOneMuddy is true in the worlds containing at least one m, muddy1 is true in the
worlds represented by triples with an m at the first position,
muddy2 is true in the worlds represented by triples with an m at the second position,
muddy3 is true in the worlds represented by triples with an m at the third position.

As explained after Definition 2.1 the formula corresponding to a (sequential) dialog is created
by prefixing the statement of agent i by Ki (for every agent), and joining the formulas obtained
in this way by means of + . (As + is associative, at this time we do not bother to place
parentheses.) The formula is:

KFatheratLeastOneMuddy + KChild1¬KwChild1muddy1 +
+ KChild2¬KwChild2muddy2 + KChild3KwChild3muddy3.

As �mKi¬Kwiα ≡ ¬Kwiα, the formula is equivalent to:

KFatheratLeastOneMuddy + ¬KwChild1muddy1 +
+¬KwChild2muddy2 + KwChild3muddy3

As for any w ∈ W,

M, w|�mKFatheratLeastOneMuddy ≡ atLeastOneMuddy

by Proposition 2.16 it is enough to consider the following formula:

atLeastOneMuddy + ¬KwChild1muddy1 +
+¬KwChild2muddy2 + KwChild3muddy3.

One can see that there are exactly four worlds in which this formula is satisfied: 〈c, c,m〉,
〈c,m,m〉, 〈m, c,m〉, 〈m,m,m〉. One of them has to be the actual world of the agents. We
do not have enough information to determine which one but we can see that all these worlds
contain an m at the third position. Therefore, the forehead of Child3 is muddy.

Remark 2.18
The operation + can be interpreted also in Kripke models with nonrigid designators. This
leads to a (semantically defined) logic LKd+

m .
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LKd+
m is a conservative extension of both LKd

m and LK+
m . (By a standard semantical

argument that uses completeness of LKd
m and LK+

m .) Proposition 2.13 generalizes to LKd+
m :

1. If a formula β ∈ Ld+
m does not contain Ki ,Kwi ,Kvi then �d+

m α + β ≡ α ∧ β.
2. If a formula β ∈ Ld+

m is K-positive then �d+
m α ∧ β → α + β.

Moreover, the following schemata are valid in LKd+
m :

• Kvi c + Kvi d ≡ Kvi c ∧ Kvi d
• Kiα + Kvi d ≡ Kiα ∧ Kvi d
• (α + Kvi d) → Ki (α → (α + Kvi d))
• (α + ¬Kvi d) → Ki (α → (α + ¬Kvi d))

• |�mα ≡ β
φ(α) ≡ φ(β)

We do not know whether the axioms of LKd
m and LK+

m augmented by the above ones give a
complete axiomatization of LKd+

m .
The statement from Proposition 2.16 is valid also for Kripke models with nonrigid desi-

gnators.

As the next example shows, even without a completeness result, LKd+
m can be a useful

tool.

Example 2.19 Mr. Sum & Mr. Product II
Consider the model M corresponding to the situation in the puzzle of Mr. Sum & Mr. Product
after Mr. Puzzle’s communications. Possible worlds:

W = {〈a, b〉 ∈ N × N : 1 < a ≤ b}.
Mr. Sum does not distinguish two worlds if they have the same sum; Mr. Product—if they
have the same product:

〈a, b〉RSum〈a′, b′〉 iff a + b = a′ + b′,
〈a, b〉RProduct〈a′, b′〉 iff a ∗ b = a′ ∗ b′.

We do not specify the actual world in this model—we will test a formula corresponding to
the dialog of Mr. Sum and Mr. Product in various worlds of the model. If the formula is true
in a world, the world can be taken as the actual world. In this way we will obtain all the
worlds (situations) in which the dialog could have taken place.

Our language Ld+
2 does not contain any propositional letters; it contains a nonrigid desi-

gnator numbers which is interpreted in every possible world. Its value is the world itself:
vD(w,numbers) = w (for any w ∈ W ).

As explained after Definition 2.1 the formula corresponding to the dialog is created by
prefixing the statement of agent i by Ki (for every agent), joining parallel communications by
means of ∧ , and sequential ones by means of +. Note that the first statement of Mr. Product
and the first statement of Mr. Sum are parallel communications, therefore the following
formula corresponds to the dialog. (As + is associative, we omit some parentheses.)

(KProduct¬KvProductnumbers ∧ KSum¬KvProductnumbers) +
+ KProductKvProductnumbers + KSumKvSumnumbers
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The following equivalences hold in LKd+
m (in fact, they are logically true in LKd

m) :

(KProduct¬KvProductnumbers ∧ KSum¬KvProductnumbers) ≡
≡ KSum¬KvProductnumbers,

KProductKvProductnumbers ≡ KvProductnumbers,

KSumKvSumnumbers ≡ KvSumnumbers.

Therefore, the formula representing the dialog can be reduced to:

KSum¬KvProductnumbers + KvProductnumbers + KvSumnumbers.

Because of the size of the problem it is better to employ a computer to test in which worlds
〈a, b〉 ∈ N × N : 1 < a ≤ b ≤ 100 the last formula is satisfied. (It is harmless that the
model is infinite because equivalence classes of the relations are always finite). The program
returns four worlds: 〈4, 13〉, 〈4, 61〉, 〈16, 73〉, 〈64, 73〉.
We can consider another version of the puzzle in which Mr. Puzzle tells Mr. Sum and
Mr. Product in a public communication that the numbers are not greater than 100. Now
the model is smaller:

W = {〈a, b〉 ∈ N × N : 1 < a ≤ b ≤ 100}.
The formula representing dialog stays the same. The reader can write a PROLOG or LISP
program and find the solution.

3 Concluding remarks

Because of applications in distributed systems and in expert systems, logics of knowledge
receive a growing attention in computer science community. In both of these applications
it is however essential to strengthen the expressive power of the logic to describe how the
knowledge changes after communications among agents.

In this paper we discussed public communications and defined two corresponding logics
allowing for two degrees of strength of the language. Although intuitive descriptions of
public communications involve time and the notion of common knowledge, we were able to
eliminate them from our model. This elimination reduces the computational complexity of
algorithms for testing satisfiability of formulas in possible worlds and makes them suitable
for implementations.
The logics introduced in the paper can be used to solve in an automatic way problems similar
to those of examples 1.1, 1.2; in general—problems which satisfy the following assumptions:

• True knowledge: If an agent knows that α is true then it is true.
• Cumulative knowledge: Agents do not forget what they knew or heard.
• Honest messages: An agent communicates α only if he knows that α is true .
• Implicit knowledge discussed: Agents are perfect reasoners. For instance if an agent says

“I do not know α” it is not fault of his deductive abilities but α is not a logical consequence
of his knowledge.

• Guaranteed communication channels: No message can be delivered late, misplaced, lost,
changed or overheard.

• Common knowledge of external notions: For instance Mr. Sum and Mr. Product know in
the sense of common knowledge what natural numbers are, what a sum is and a product is.

• Messages expressed in a language of propositional logic of knowledge with nonrigid de-
signators.
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• Public communication sessions: Agents start their session at the time 0, each with some
primary knowledge. At any moment t any agent can initiate some communications (possi-
bly many and possibly several agents at the same moment) sending messages based on the
knowledge he has at this time. The messages are received at the time t + 1 and contribute
to new states of agents’ knowledge.

• Common initial Kripke model: Agents discuss an external object (world) which is fully
characterized by the values of its attributes. The agents know at the beginning of the session
what combinations of values of attributes are possible. All these facts constitute a common
knowledge—Kripke models used by the agents have the same universe. Moreover, if at
the beginning of the session an agent knows values of some attributes then everybody
knows (in the sense of common knowledge) that he knows the values of these attributes.
So, the kind of everybody’s primary knowledge constitutes common knowledge—agents
know each other’s indiscernibility relations in their initial Kripke model. To sum up—all
the agents consider at the time t = 0 the same Kripke model.

• Complete description of communications: For instance, if Mr. Sum knows eventually the
numbers it is because of his reasoning and not because of a secret message sent to him by
Mr. Puzzle, a message we do not know about.

While specifying the class of problems which can be solved using the logic of public com-
munications we assumed that agents have the same initial model. In fact, the assumptions
above ensure that at each moment t agents have a common Kripke model. Every next public
communication changes this model but the new model is also common to all the agents.

4 Method

Given a problem satisfying the bulleted assumptions above, define the corresponding Kripke
model, express the dialog of the agents by a formula of LK+

m or LKd+
m , simplify the formula

using equivalences of the logic or Proposition 2.16 and test in which worlds of the model it
is true.

A test whether a formula of LKd+
m is satisfied in a world of a given Kripke model can be im-

plemented in PROLOG in a very natural way. The universe of the model can be represented by
a procedure worlds(PossibleWorld)which generates under backtracking all possible
worlds. Indiscernibility relations can be represented by a procedure relation(Agent,
World, AccessibleWorld) which generates under backtracking all the worlds indis-
cernible from the given one. (If equivalence classes of relations in our model are infinite
the program will not terminate for some queries.) Propositional symbols can be represented
by unary tests which return Yes if they are true in a world. Nonrigid designators can be
represented as procedures which take a world as their first argument and return the (unique)
value of the designator on the second argument. PROLOG’s device of infix and prefix opera-
tors allows us to write formulas in a transparent way. The procedure satisfied(World,
Formula, YesOrNo) can be defined recursively according to the definitions 1.4, 1.8 and
+ can be translated away by the mapping * from Theorem 2.5.

Due to its associativity there are multiple ways of translating the + away from a formula.
They lead to equivalent but not identical formulas, for instance:

p + q + r ≡ p + (q + r) ≡ p + (q ∧ r) ≡ (p + q) ∧ (p + r)

≡ (p ∧ q) ∧ (p + r) ≡ (p ∧ q) ∧ (p ∧ r)

and at the same time:
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p + q + r ≡ (p + q)+ r ≡ (p + q) ∧ r ≡ (p ∧ q) ∧ r

As we see, defining + as left associative saves some work.
The program based on above ideas is purely recursive and it does not use much memory

but it possibly repeats the same calculation many times.
Another way of handling + can be based on Definition 2.1. It leads to an iterative program

which uses a lot of memory (especially for Kripke models with big universes) and possi-
bly carries out some computations which are irrelevant to a problem (but does each such
calculation only once).

The most reasonable choice for implementation is an algorithm intermediate between
the mentioned approaches—one which uses recursion but stores obtained results to avoid
repeating the calculations.
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