Update Semantics 2

Frank Veltman

Mini course at the Department of Philosophy, Peking University

Identity and Identification

The languages we're interested in

I will **sketch** a semantics for languages of first order predicate logic with

- identity: =
- epistemic possibility: *might*
- logical necessity: □

Modeling Information about the world

Definition 1 Fix a domain \mathcal{D} of objects. Then w is an element of the set of possible worlds \mathcal{W} iff $w = \langle \nu, \iota \rangle$, where

- (a) the *naming function* ν assigns to every individual constant c an element $\nu(c) \in \mathcal{D}$;
- (b) the *interpretation function* ι assigns to every n-place predicate P an n-ary relation $\iota(P) \subseteq \mathcal{D}^n$.

Example

This example involves two objects d_1 , and d_2 . One is called a and one (possibly the same one) is called c. One — you don't know which one — is blue, and the other is red.

Now what are the relevant possible worlds?

Set $\mathcal{D} = \{d_1, d_2\}$. Then \mathcal{W} is the set of pairs $\langle \boldsymbol{\nu}, \boldsymbol{\iota} \rangle$ such that

- (a) ν is a function from $\{a,c\}$ into $\{d_1,d_2\}$;
- (b) ι is a function from $\{blue, red\}$ into the powerset of $\{d_1, d_2\}$ such that either $\iota(blue) = \{d_1\}$ and $\iota(red) = \{d_2\}$, or $\iota(blue) = \{d_2\}$ and $\iota(red) = \{d_1\}$

Note that there are four naming functions, and two interpretation functions

$$\nu_{1} = \{\langle a, d_{1} \rangle, \langle c, d_{1} \rangle\}
\nu_{2} = \{\langle a, d_{1} \rangle, \langle c, d_{2} \rangle\}
\nu_{3} = \{\langle a, d_{2} \rangle, \langle c, d_{1} \rangle\}
\nu_{4} = \{\langle a, d_{2} \rangle, \langle c, d_{2} \rangle\}$$

$$\iota_{1}(blue) = \{d_{1}\}, \ \iota_{1}(red) = \{d_{2}\}\$$

 $\iota_{2}(blue) = \{d_{2}\}, \ \iota_{2}(red) = \{d_{1}\}\$

So, there are eight possible worlds, pictured on next slide. In these pictures, d_1 is the left object, and d_2 the right object.

The table also shows which of these possible worlds are left if you learn that

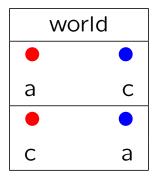
- the blue one = a
- \bullet c = a
- $this_{d_1} = a$

world	the blue one	$= a \mid c = a$	$this_{d_1} = a$
•			yes
a o			
•	yes		
C a			
		yes	yes
ac			
	yes	yes	
a			
•	yes		yes
a o			
•			
c a			
•	yes	yes	yes
ac			
		yes	
ac			

The puzzle

Now let's look at set of worlds left if all you know about the case is this: $Red(this_{d_1})$; $Blue(this_{d_2})$; $c \neq a$.

Given this information the possibilities left are



Given these two epistemic possibilities, do you accept $\forall x \ might(x=a)$? How about $\forall x \ might(x=this_{d_1})^*$?

^{*}Read ' $\forall x$ ' as 'for all objects x in the domain \mathcal{D} '

I expect that most of you accept $\forall x \ might(x=a)$. I also expect that most of you, knowing that $c \neq a$ will reject c = a. But then, it looks like *universal instantiation* is not always valid.

Right!!

In the resulting system *universal instantiation* is not always valid. You can always instantiate with a demonstrative, but with an individual constant only if you know which object it denotes. And here you don't.

Likewise, existential generalization sometimes fails:

$$\forall y \ might(y \neq a) \not\models \exists x \forall y \ might(y \neq x)$$

Here, too, generalization is not allowed because the constant a is not — not yet — epistemically rigid.

Analytic aposteriori

In *Naming and Necessity* Saul Kripke claims that true identity statements like *The Morning Star* = *The Evening Star* express necessary truths, but that they are not epistemically *a priori*. In many cases it's a truth that has to be discovered.

We already saw that in the logical system I am describing identity statements can be a posteriori. One can at first be in a state in which one accepts $might(a \neq c)$, and next find out that in fact a = c. Now we want to get on top of this that

$$a = c \models \Box (a = c)$$

A cognitive state* S is function that assigns to every naming function ν a pair $\langle U, F \rangle$, where U and F are sets of interpretation functions such that (a) $F \subseteq U$, and (b) If $F = \emptyset$, then $U = \emptyset$.

- If $\langle U, F \rangle = S(\nu)$, and $\iota \in U$, then the world $\langle \nu, \iota \rangle$ is a world that the agent considers *logically possible*.
- If $\langle U, F \rangle = S(\nu)$, and $\iota \in F$, then, given the agent's information, the world $\langle \nu, \iota \rangle$ might be the actual world.
- If $S(\nu) = \langle \emptyset, \emptyset \rangle$, this means that the possibility is excluded that the objects in \mathcal{D} are named as ν describes.

^{*}I am leaving out everything needed for the quantifiers

• The *minimal state* is the state **1** which assigns to every ν the pair $\langle I, I \rangle$ where I is the set of all interpretation functions.

• The *absurd state*, is the state **0** which assigns to every ν the pair $\langle \emptyset, \emptyset \rangle$.

Before we can define the update clauses for the full language we first define what it means to update a set of worlds that all have the same naming function with a descriptive sentence.

Definition 2

• Let X be a set of interpretation functions. Set ${}^{\nu}X = \{\nu\} \times X$

•
$${}^{\nu}X[Ra_1 \ldots a_n] = \{ \iota \in X \mid \langle \nu(a_1), \ldots, \nu(a_n) \rangle \in \iota(R) \}.$$

• ${}^{\nu}X[c=a]=X$ if $\nu(c)=\nu(a)$, and ${}^{\nu}X[c=a]=\emptyset$ if $\nu(c)\neq\nu(a)$.

• etcera

Before we can define the update clauses for the full language we first define what it means to update a set of worlds that all have the same naming function with a descriptive sentence.

Definition 3

• Let X be a set of interpretation functions. Set ${}^{\nu}X = \{\nu\} \times X$

•
$${}^{\nu}X[Ra_1 \ldots a_n] = \{ \iota \in X \mid \langle \nu(a_1), \ldots, \nu(a_n) \rangle \in \iota(R) \}.$$

• ${}^{\nu}X[c=a] = X$ if $\nu(c) = \nu(a)$, and ${}^{\nu}X[c=a] = \emptyset$ if $\nu(c) \neq \nu(a)$.

etcera

Now the update clause for descriptive sentences φ is given by

- $S[\varphi]$ is determined as follows. Suppose $S(\nu) = \langle U, F \rangle$. Then $S[\varphi](\nu) = \langle U', F' \rangle$, where (a) $F' = {}^{\nu}F[\varphi]$
 - (b) U' = U if $F' \neq \emptyset$, and $U' = \emptyset$ if $F' = \emptyset$.

The clause for $might\varphi$ remains the same.

- $S[might \varphi] = S$ if $S[\varphi] \neq 0$ $S[might \varphi] = \emptyset$ if $S[\varphi] = 0$
- $S[\Box \varphi]$ is determined as follows. Suppose $S(\nu) = \langle U, F \rangle$. Then $S[\Box \varphi](\nu) = \langle {}^{\nu}U[\varphi], {}^{\nu}F[\varphi] \rangle$

Exercise 1

- (a) Check that $1[might(c \neq a)][c = a] \neq 0$
- (b) Prove that $c = a \models \Box (c = a)$.

There is a lot more to say...

But now it's time for comments and questions.